Atrial fibrillation risk prediction from the 12-lead electrocardiogram using digital biomarkers and deep representation learning

被引:34
作者
Biton, Shany [1 ]
Gendelman, Sheina [1 ]
Ribeiro, Antonio H. [2 ]
Miana, Gabriela [3 ,4 ]
Moreira, Carla [3 ]
Ribeiro, Antonio Luiz P. [3 ,4 ]
Behar, Joachim A. [1 ]
机构
[1] Technion IIT, Fac Biomed Engn, Haifa, Israel
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[3] Hosp Clin, Telehlth Ctr, Belo Horizonte, MG, Brazil
[4] Univ Fed Minas Gerais, Fac Med, Dept Internal Med, Belo Horizonte, MG, Brazil
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2021年 / 2卷 / 04期
关键词
Atrial fibrillation; Deep learning; Risk prediction; CARDIOVASCULAR-DISEASE;
D O I
10.1093/ehjdh/ztab071
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims This study aims to assess whether information derived from the raw 12-lead electrocardiogram (ECG) combined with clinical information is predictive of atrial fibrillation (AF) development. Methods and results We use a subset of the Telehealth Network of Minas Gerais (TNMG) database consisting of patients that had repeated 12-lead ECG measurements between 2010 and 2017 that is 1 130 404 recordings from 415 389 unique patients. Median and interquartile of age for the recordings were 58 (46-69) and 38% of the patients were males. Recordings were assigned to train-validation and test sets in an 80:20% split which was stratified by class, age and gender. A random forest classifier was trained to predict, for a given recording, the risk of AF development within 5 years. We use features obtained from different modalities, namely demographics, clinical information, engineered features, and features from deep representation learning. The best model performance on the test set was obtained for the model combining features from all modalities with an area under the receiver operating characteristic curve (AUROC) = 0.909 against the best single modality model which had an AUROC = 0.839. Conclusion Our study has important clinical implications for AF management. It is the first study integrating feature engineering, deep learning, and Electronic medical record system (EMR) metadata to create a risk prediction tool for the management of patients at risk of AF. The best model that includes features from all modalities demonstrates that human knowledge in electrophysiology combined with deep learning outperforms any single modality approach. The high performance obtained suggest that structural changes in the 12-lead ECG are associated with existing or impending AF. [GRAPHICS] .
引用
收藏
页码:576 / 585
页数:10
相关论文
共 29 条
[1]   Relationship between left atrial tissue structural remodelling detected using late gadolinium enhancement MRI and left ventricular hypertrophy in patients with atrial fibrillation [J].
Akkaya, Mehmet ;
Higuchi, Koji ;
Koopmann, Matthias ;
Burgon, Nathan ;
Erdogan, Ercan ;
Damal, Kavitha ;
Kholmovski, Eugene ;
McGann, Chris ;
Marrouche, Nassir F. .
EUROPACE, 2013, 15 (12) :1725-1732
[2]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[3]   CARDIOVASCULAR-DISEASE RISK PROFILES [J].
ANDERSON, KM ;
ODELL, PM ;
WILSON, PWF ;
KANNEL, WB .
AMERICAN HEART JOURNAL, 1991, 121 (01) :293-298
[4]  
Assaraf D, 2020, Comput Cardiol, P47
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]  
Bidstrup Signe, 2013, J Atr Fibrillation, V6, P956, DOI 10.4022/jafib.956
[7]   Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review [J].
Brindle, P. ;
Beswick, A. ;
Fahey, T. ;
Ebrahim, S. .
HEART, 2006, 92 (12) :1752-1759
[8]   Remote Atrial Fibrillation Burden Estimation Using Deep Recurrent Neural Network [J].
Chocron, Armand ;
Oster, Julien ;
Biton, Shany ;
Mandel, Franck ;
Elbaz, Meyer ;
Zeevi, Yehoshua Y. ;
Behar, Joachim A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (08) :2447-2455
[9]   Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation A Population-Based Study [J].
Christopoulos, Georgios ;
Graff-Radford, Jonathan ;
Lopez, Camden L. ;
Yao, Xiaoxi ;
Attia, Zachi, I ;
Rabinstein, Alejandro A. ;
Petersen, Ronald C. ;
Knopman, David S. ;
Mielke, Michelle M. ;
Kremers, Walter ;
Vemuri, Prashanthi ;
Siontis, Konstantinos C. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (12) :E009355
[10]   Usefulness of P-Wave Duration and Morphologic Variability to Identify Patients Prone to Paroxysmal Atrial Fibrillation [J].
Conte, Giulio ;
Luca, Adrian ;
Yazdani, Sasan ;
Caputo, Maria Luce ;
Regoli, Francois ;
Moccetti, Tiziano ;
Kappenberger, Lukas ;
Vesin, Jean-Marc ;
Auricchio, Angelo .
AMERICAN JOURNAL OF CARDIOLOGY, 2017, 119 (02) :275-279