Stability of wave-packet dynamics under perturbations

被引:6
作者
Bolte, J [1 ]
Schwaibold, T [1 ]
机构
[1] Univ Ulm, Theoret Phys Abt, D-89069 Ulm, Germany
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026223
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a method to investigate the stability of wave-packet dynamics under perturbations of the Hamiltonian. Our approach relies on semiclassical approximations, but is nonperturbative. Two separate contributions to the quantum fidelity are identified: one factor derives from the dispersion of the wave packets, whereas the other factor is determined by the separation of a trajectory of the perturbed classical system away from a corresponding unperturbed trajectory. We furthermore estimate both contributions in terms of classical Lyapunov exponents and find a decay of fidelity that is, generically, at least exponential, but may also be doubly exponential. The latter case is shown to be realized for inverted harmonic oscillators.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
BEVILAQUA DV, NLINCD0409007
[2]   Semiclassical propagation of coherent states with spin-orbit interaction [J].
Bolte, J ;
Glaser, R .
ANNALES HENRI POINCARE, 2005, 6 (04) :625-656
[3]  
Bouzouina A, 2002, DUKE MATH J, V111, P223
[4]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034
[5]  
Combescure M, 1997, ASYMPTOTIC ANAL, V14, P377
[6]  
COMBESCURE M, MATHPH0503013, P16702
[7]  
COMBESCURE M, MATHPH0509027, P16702
[8]  
COMBESCURE M, QUANTPH0510151, P16702
[9]   Measuring the Lyapunov exponent using quantum mechanics [J].
Cucchietti, F.M. ;
Lewenkopf, C.H. ;
Mucciolo, E.R. ;
Pastawski, H.M. ;
Vallejos, R.O. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046209
[10]   Echoes in classical dynamical systems [J].
Eckhardt, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02) :371-380