Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress

被引:90
|
作者
Lee, Min Hee [1 ,4 ]
Cho, Eun Ju [1 ]
Wi, Seung Gon [2 ]
Bae, Hyoungwoo [1 ]
Kim, Ji Eun [1 ]
Cho, Jae-Young [3 ]
Lee, Sungbeom [1 ]
Kim, Jin-Hong [1 ]
Chung, Byung Yeoup [1 ]
机构
[1] Korea Atom Energy Res Inst, Adv Radiat Technol Inst, Jeongeup Si 580185, Jeollabuk Do, South Korea
[2] Chonnam Natl Univ, Bioenergy Res Inst, Kwangju 500757, South Korea
[3] Chonbuk Natl Univ, Dept Appl Life Sci, Jeonju 561756, South Korea
[4] Natl Inst Crop Sci, Rice Breeding & Cultivat Div, Iksan 570080, Jeollabuk Do, South Korea
关键词
Antioxidative enzyme; Oryza sativa L; Photosynthesis; Reactive oxygen species; Salt stress; INDUCED OXIDATIVE STRESS; ORYZA-SATIVA L; CHLOROPHYLL FLUORESCENCE; PHOTOOXIDATIVE STRESS; DIFFERENTIAL RESPONSE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; CULTIVATED TOMATO; SODIUM-CHLORIDE; WATER RELATIONS;
D O I
10.1016/j.plaphy.2013.05.047
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O-2(center dot-) and (OH)-O-center dot species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system. (c) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [31] Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar
    Wang, R. L.
    Hua, C.
    Zhou, F.
    Zhou, Q. -C.
    PHOTOSYNTHETICA, 2009, 47 (01) : 125 - 127
  • [32] Salt-tolerant and -sensitive seedlings exhibit noteworthy differences in lipolytic events in response to salt stress
    Gogna, Mansi
    Bhatla, Satish C.
    PLANT SIGNALING & BEHAVIOR, 2020, 15 (04)
  • [33] Long-term culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species
    Rus, AM
    Rios, S
    Olmos, E
    Santa-Cruz, A
    Bolarin, MC
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 157 (04) : 413 - 420
  • [34] Comparative Salt-Stress Responses in Salt-Tolerant (Vikinga) and Salt-Sensitive (Regalona) Quinoa Varieties. Physiological, Anatomical and Biochemical Perspectives
    Serrat, Xavier
    Quello, Antony
    Manikan, Brigen
    Lino, Gladys
    Nogues, Salvador
    AGRONOMY-BASEL, 2024, 14 (12):
  • [35] Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress
    Aktas, H.
    Abak, K.
    Eker, S.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2012, 87 (04): : 360 - 366
  • [36] Transcriptional analysis of salt-responsive genes to salinity stress in three salt-tolerant and salt-sensitive Barely cultivars
    Mohammadi, Seyyed Abolghasem
    Hamian, Samira
    Vahed, Mohammad Moghaddam
    Bandehagh, Ali
    Gohari, Gholamreza
    Janda, Tibor
    SOUTH AFRICAN JOURNAL OF BOTANY, 2021, 141 : 457 - 465
  • [37] MOLECULAR AND PHYSIOLOGICAL-RESPONSES TO ABSCISIC-ACID AND SALTS IN ROOTS OF SALT-SENSITIVE AND SALT-TOLERANT INDICA RICE VARIETIES
    MOONS, A
    BAUW, G
    PRINSEN, E
    VANMONTAGU, M
    Van Der Straeten, D
    PLANT PHYSIOLOGY, 1995, 107 (01) : 177 - 186
  • [38] Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes
    Neto, ADD
    Prisco, JT
    Enéas, J
    de Abreu, CEB
    Gomes, E
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (01) : 87 - 94
  • [39] Transcriptional analysis of major chaperone genes in salt-tolerant and salt-sensitive mesorhizobia
    Brigido, Clarisse
    Alexandre, Ana
    Oliveira, Solange
    MICROBIOLOGICAL RESEARCH, 2012, 167 (10) : 623 - 629
  • [40] Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage
    Vijayata Singh
    Ajit Pal Singh
    Jyoti Bhadoria
    Jitender Giri
    Jogendra Singh
    Vineeth T. V.
    P. C. Sharma
    Protoplasma, 2018, 255 : 1667 - 1681