Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress

被引:90
|
作者
Lee, Min Hee [1 ,4 ]
Cho, Eun Ju [1 ]
Wi, Seung Gon [2 ]
Bae, Hyoungwoo [1 ]
Kim, Ji Eun [1 ]
Cho, Jae-Young [3 ]
Lee, Sungbeom [1 ]
Kim, Jin-Hong [1 ]
Chung, Byung Yeoup [1 ]
机构
[1] Korea Atom Energy Res Inst, Adv Radiat Technol Inst, Jeongeup Si 580185, Jeollabuk Do, South Korea
[2] Chonnam Natl Univ, Bioenergy Res Inst, Kwangju 500757, South Korea
[3] Chonbuk Natl Univ, Dept Appl Life Sci, Jeonju 561756, South Korea
[4] Natl Inst Crop Sci, Rice Breeding & Cultivat Div, Iksan 570080, Jeollabuk Do, South Korea
关键词
Antioxidative enzyme; Oryza sativa L; Photosynthesis; Reactive oxygen species; Salt stress; INDUCED OXIDATIVE STRESS; ORYZA-SATIVA L; CHLOROPHYLL FLUORESCENCE; PHOTOOXIDATIVE STRESS; DIFFERENTIAL RESPONSE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; CULTIVATED TOMATO; SODIUM-CHLORIDE; WATER RELATIONS;
D O I
10.1016/j.plaphy.2013.05.047
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O-2(center dot-) and (OH)-O-center dot species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system. (c) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 50 条
  • [1] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Fang, Xin
    Mo, Junjie
    Zhou, Hongkai
    Shen, Xuefeng
    Xie, Yuling
    Xu, Jianghuan
    Yang, Shan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Xin Fang
    Junjie Mo
    Hongkai Zhou
    Xuefeng Shen
    Yuling Xie
    Jianghuan Xu
    Shan Yang
    Scientific Reports, 13
  • [3] ANTIOXIDANT RESPONSE TO NACL STRESS IN SALT-TOLERANT AND SALT-SENSITIVE CULTIVARS OF COTTON
    GOSSETT, DR
    MILLHOLLON, EP
    LUCAS, MC
    CROP SCIENCE, 1994, 34 (03) : 706 - 714
  • [4] RESPONSES OF SALT-TOLERANT AND SALT-SENSITIVE LINES OF SAFFLOWER (CARTHAMUS-TINCTORIUS L) TO SALT STRESS
    ASHRAF, M
    FATIMA, H
    ACTA PHYSIOLOGIAE PLANTARUM, 1995, 17 (01) : 61 - 70
  • [5] Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings
    Ning, Lihua
    Kan, Guizhen
    Shao, Hongbo
    Yu, Deyue
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (08) : 2707 - 2719
  • [6] Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica)
    Sreenivasulu, N
    Grimm, B
    Wobus, U
    Weschke, W
    PHYSIOLOGIA PLANTARUM, 2000, 109 (04) : 435 - 442
  • [7] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [8] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Denver I. Walitang
    Chang-Gi Kim
    Kiyoon Kim
    Yeongyeong Kang
    Young Kee Kim
    Tongmin Sa
    BMC Plant Biology, 18
  • [9] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198
  • [10] Differential Physiological Responses to Salt Stress between Salt-Sensitive and Salt-Tolerant japonica Rice Cultivars at the Post-Germination and Seedling Stages
    Ye, Shenghai
    Huang, Zhibo
    Zhao, Guibin
    Zhai, Rongrong
    Ye, Jing
    Wu, Mingming
    Yu, Faming
    Zhu, Guofu
    Zhang, Xiaoming
    PLANTS-BASEL, 2021, 10 (11):