Dismantling and Rebuilding the Trisulfide Cofactor Demonstrates Its Essential Role in Human Sulfide Quinone Oxidoreductase

被引:14
作者
Landry, Aaron P. [1 ]
Moon, Sojin [1 ]
Bonanata, Jenner [2 ,3 ]
Cho, Uhn Soo [1 ]
Coitino, E. Laura [2 ,3 ]
Banerjee, Ruma [1 ]
机构
[1] Univ Michigan, Med Sch, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Univ Republica, Fac Ciencias, Inst Quim Biol, Lab Quim Teor & Computac LQTC, Montevideo 11400, Uruguay
[3] Univ Republica, Ctr Invest Biomed CeInBio, Montevideo 11400, Uruguay
基金
美国国家卫生研究院;
关键词
HUMAN GROWTH-HORMONE; HYDROGEN-SULFIDE; MOLECULAR-DYNAMICS; KINETIC-ANALYSIS; OXIDATION; DISULFIDE; IMPACTS; VARIANT; PATH;
D O I
10.1021/jacs.0c06066
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in sulfide clearance, coupling H2S oxidation to coenzyme Q-reduction. Recent structures of human SQOR revealed a sulfur atom bridging the SQOR active site cysteines in a trisulfide configuration. Here, we assessed the importance of this cofactor using kinetic, crystallographic, and computational modeling approaches. Cyanolysis of SQOR proceeds via formation of an intense charge transfer complex that subsequently decays to eliminate thiocyanate. We captured a disulfanyl-methanimido thioate intermediate in the SQOR crystal structure, revealing how cyanolysis leads to reversible loss of SQOR activity that is restored in the presence of sulfide. Computational modeling and MD simulations revealed an similar to 10(5)-fold rate enhancement for nucleophilic addition of sulfide into the trisulfide versus a disulfide cofactor. The cysteine trisulfide in SQOR is thus critical for activity and provides a significant catalytic advantage over a cysteine disulfide.
引用
收藏
页码:14295 / 14306
页数:12
相关论文
共 63 条
[1]  
Andersson C, 1996, INT J PEPT PROT RES, V47, P311
[2]  
[Anonymous], 2017, COMMUN INTEGR BIOL, DOI DOI 10.1080/19420889.2017.1329786
[3]   Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm [J].
Åqvist, J ;
Wennerström, P ;
Nervall, M ;
Bjelic, S ;
Brandsdal, BO .
CHEMICAL PHYSICS LETTERS, 2004, 384 (4-6) :288-294
[4]   Flavoprotein disulfide reductases: Advances in chemistry and function [J].
Argyrou, A ;
Blanchard, JS .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 78, 2004, 78 :89-142
[5]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[6]   Persulfides, at the crossroads between hydrogen sulfide and thiols [J].
Benchoam, Dayana ;
Cuevasanta, Ernesto ;
Moller, Matias N. ;
Alvarez, Beatriz .
PROTEIN OXIDATION, 2020, 64 (01) :155-168
[7]   Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes [J].
Bietz, Stefan ;
Urbaczek, Sascha ;
Schulz, Benjamin ;
Rarey, Matthias .
JOURNAL OF CHEMINFORMATICS, 2014, 6
[8]   Understanding the mechanism of H2S oxidation by flavin-dependent sulfide oxidases: a DFT/IEF-PCM study [J].
Bonanata, Jenner ;
Laura Coitino, E. .
JOURNAL OF MOLECULAR MODELING, 2019, 25 (10)
[9]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[10]   Mitochondria and Sulfide: A Very Old Story of Poisoning, Feeding, and Signaling? [J].
Bouillaud, Frederic ;
Blachier, Francois .
ANTIOXIDANTS & REDOX SIGNALING, 2011, 15 (02) :379-391