Dimers of DNA-PK create a stage for DNA double-strand break repair

被引:72
|
作者
Chaplin, Amanda K. [1 ]
Hardwick, Steven W. [2 ]
Liang, Shikang [1 ]
Kefala Stavridi, Antonia [1 ]
Hnizda, Ales [1 ]
Cooper, Lee R. [2 ]
De Oliveira, Taiana Maia [3 ]
Chirgadze, Dimitri Y. [2 ]
Blundell, Tom L. [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge, England
[2] Univ Cambridge, Dept Biochem, CryoEM Facil, Cambridge, England
[3] AstraZeneca R&D, Discovery Sci Struct Biophys & FBLG, Cambridge, England
基金
英国惠康基金;
关键词
CRYO-EM STRUCTURE; XRCC4-DNA LIGASE-IV; PROTEIN-KINASE; V(D)J RECOMBINATION; CRYSTAL-STRUCTURE; COMPLEX; LIGATION; SUGGESTS; SITES; SPACE;
D O I
10.1038/s41594-020-00517-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new cryo-EM structure of human DNA-PKcs in complex with a Ku70/80 heterodimer and DNA reveals how Ku80-DNA-PKcs interactions create a scaffold to mediate DNA double-strand break repair. DNA double-strand breaks are the most dangerous type of DNA damage and, if not repaired correctly, can lead to cancer. In humans, Ku70/80 recognizes DNA broken ends and recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form DNA-dependent protein kinase holoenzyme (DNA-PK) in the process of non-homologous end joining (NHEJ). We present a 2.8-angstrom-resolution cryo-EM structure of DNA-PKcs, allowing precise amino acid sequence registration in regions uninterpreted in previous 4.3-angstrom X-ray maps. We also report a cryo-EM structure of DNA-PK at 3.5-angstrom resolution and reveal a dimer mediated by the Ku80 C terminus. Central to dimer formation is a domain swap of the conserved C-terminal helix of Ku80. Our results suggest a new mechanism for NHEJ utilizing a DNA-PK dimer to bring broken DNA ends together. Furthermore, drug inhibition of NHEJ in combination with chemo- and radiotherapy has proved successful, making these models central to structure-based drug targeting efforts.
引用
收藏
页码:13 / 19
页数:19
相关论文
共 50 条
  • [31] Arabidopsis DNA double-strand break repair pathways
    West, CE
    Waterworth, WM
    Sunderland, PA
    Bray, CM
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2004, 32 : 964 - 966
  • [32] Chromatin dynamics in DNA double-strand break repair
    Shi, Lei
    Oberdoerffer, Philipp
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (07): : 811 - 819
  • [33] DNA double-strand break repair in Caenorhabditis elegans
    Bennie B. L. G. Lemmens
    Marcel Tijsterman
    Chromosoma, 2011, 120 : 1 - 21
  • [34] Nampt is involved in DNA double-strand break repair
    Zhu, Bingtao
    Deng, Xiaoli
    Sun, Yifan
    Bai, Lin
    Xiahou, Zhikai
    Cong, Yusheng
    Xu, Xingzhi
    CHINESE JOURNAL OF CANCER, 2012, 31 (08) : 392 - 398
  • [35] Chromatin remodeling in DNA double-strand break repair
    Bao, Yunhe
    Shen, Xuetong
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2007, 17 (02) : 126 - 131
  • [36] Current topics in DNA double-strand break repair
    Kobayashi, Junya
    Iwabuchi, Kuniyoshi
    Miyagawa, Kiyoshi
    Sonoda, Eiichiro
    Suzuki, Keiji
    Takata, Minoru
    Tauchi, Hiroshi
    JOURNAL OF RADIATION RESEARCH, 2008, 49 (02) : 93 - 103
  • [37] DNA Double-strand Break Repair in the Context of Chromatin
    Ruebe, C. E.
    Lorat, Y.
    Schanz, S.
    Schuler, N.
    Ruebe, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S23 - S23
  • [38] Tails of histones in DNA double-strand break repair
    Bilsland, E
    Downs, JA
    MUTAGENESIS, 2005, 20 (03) : 153 - 163
  • [39] DNA double-strand break repair by homologous recombination
    van den Bosch, M
    Lohman, PHM
    Pastink, A
    BIOLOGICAL CHEMISTRY, 2002, 383 (06) : 873 - 892
  • [40] Molecular mechanisms of DNA double-strand break repair
    Kanaar, R
    Hoeijmakers, JHJ
    van Gent, DC
    TRENDS IN CELL BIOLOGY, 1998, 8 (12) : 483 - 489