Impact of rapid thermal annealing temperature on non-metallised polycrystalline silicon thin-film diodes on glass

被引:5
作者
Hidayat, H. [1 ,2 ]
Kumar, A. [1 ,2 ]
Law, F. [1 ]
Ke, C. [1 ,2 ]
Widenborg, P. I. [1 ,2 ]
Aberle, A. G. [1 ,2 ]
机构
[1] Natl Univ Singapore, Solar Energy Res Inst Singapore, Singapore 117574, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
基金
新加坡国家研究基金会;
关键词
Poly-crystalline silicon; Thin-film solar cells; Rapid thermal annealing; Electrochemical capacitance voltage; Doping concentration; Junction depth; Sheet resistance; SOLAR-CELLS; CRYSTAL SILICON; N-JUNCTIONS; CRYSTALLIZATION; SEMICONDUCTORS;
D O I
10.1016/j.tsf.2013.02.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A rapid thermal annealing (RTA) process is performed to activate the dopants and anneal point defects in planar polycrystalline silicon (poly-Si) thin-film solar cell diodes on glass. The impact of the RTA peak temperature on the open-circuit voltage (V-oc), the sheet resistance and the doping profiles of the non-metallised samples was investigated. An annealing temperature of about 1000 degrees C was found to give the highest V-oc and the lowest sheet resistance. The doping concentration was measured using the electrochemical capacitance voltage (ECV) method. The doping concentration was found to increase with increasing RTA temperature, before it decreased at high temperature. The junction depth was found to move away from the glass-side with increasing annealing temperature. The sheet resistances were calculated based on the ECV doping profiles and were found to have a trend similar to the experimental values obtained by the four-point probe method. The highest average V-oc obtained in this work is 471 mV and it corresponds to the lowest sheet resistance. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:629 / 635
页数:7
相关论文
共 35 条
[1]  
Aberle A.G., 2011, HDB PHOTOVOLTAIC SCI, P452
[2]   AUTOMATIC CARRIER CONCENTRATION PROFILE PLOTTER USING AN ELECTROCHEMICAL TECHNIQUE [J].
AMBRIDGE, T ;
FAKTOR, MM .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1975, 5 (04) :319-328
[3]   ELECTRON AND HOLE MOBILITIES IN SILICON AS A FUNCTION OF CONCENTRATION AND TEMPERATURE [J].
ARORA, ND ;
HAUSER, JR ;
ROULSTON, DJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1982, 29 (02) :292-295
[4]   Capacitance-voltage profiling and the characterisation of III-V semiconductors using electrolyte barriers [J].
Blood, P .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1986, 1 (01) :7-27
[5]  
Bock R., 2008, P 23 EUR PHOT SOL EN, P1510
[6]   Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics [J].
Branz, Howard M. ;
Teplin, Charles W. ;
Romero, Manuel J. ;
Martin, Ina T. ;
Wang, Qi ;
Alberi, Kirstin ;
Young, David L. ;
Stradins, Paul .
THIN SOLID FILMS, 2011, 519 (14) :4545-4550
[7]   High open-circuit voltage values on fine-grained thin-film polysilicon solar cells [J].
Carnel, L. ;
Gordon, I. ;
Van Gestel, D. ;
Beaucarne, G. ;
Poortmans, J. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (06)
[8]   8% efficient thin-film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD [J].
Gordon, I. ;
Carnel, L. ;
Van Gestel, D. ;
Beaucarne, G. ;
Poortmans, J. .
PROGRESS IN PHOTOVOLTAICS, 2007, 15 (07) :575-586
[9]   Hausa. [J].
Green, M ;
Reintges, CH .
LINGUA, 2004, 114 (01) :77-91
[10]   Wire bonding as a cell interconnection technique for polycrystalline silicon thin-film solar cells on glass [J].
Gress, Peter J. ;
Widenborg, Per I. ;
Varlamov, Sergey ;
Aberle, Armin G. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (03) :221-228