Geometry of renormalization group flows in theory space

被引:5
|
作者
Kar, S [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Ctr Theoret Studies, Kharagpur 721302, W Bengal, India
来源
PHYSICAL REVIEW D | 2001年 / 64卷 / 10期
关键词
D O I
10.1103/PhysRevD.64.105017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Renormalization group (RG) flows in theory space (the space of couplings) are generated by a vector field-the beta function. Using a specific metric ansatz in theory space and certain methods employed largely in the context of general relativity, we examine the nature of the expansion, shear and rotation of geodesic RG flows. The expansion turns out to be a negative quantity inversely related to the norm of the beta function. This implies the focusing of the flows towards the fixed points of a given field theory. The evolution equation for the expansion along geodesic RG flows is written down and analyzed. We illustrate the results for a scalar field theory with a j phi coupling and pointers to other areas are briefly mentioned.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] RENORMALIZATION-GROUP FLOWS AS GRADIENT FLOWS IN COUPLING-CONSTANT SPACE FOR D-DIMENSIONAL SYSTEMS
    MAVROMATOS, NE
    MIRAMONTES, JL
    DESANTOS, JMS
    PHYSICAL REVIEW D, 1989, 40 (02): : 535 - 539
  • [42] RENORMALIZATION OF QUANTUM-FIELD THEORY IN CURVED SPACE-TIME AND RENORMALIZATION-GROUP EQUATIONS
    BUCHBINDER, IL
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1986, 34 (09): : 605 - 628
  • [43] Renormalization group theory of crossovers
    O'Connor, D
    Stephens, CR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 425 - 545
  • [44] Renormalization group and probability theory
    Jona-Lasinio, G
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 352 (4-6): : 439 - 458
  • [45] Renormalization group theory of earthquakes
    Saleur, Hubert
    Sammis, Charles G.
    Sornette, Didier
    NONLINEAR PROCESSES IN GEOPHYSICS, 1996, 3 (02) : 102 - 109
  • [46] Unitarity bounds and renormalization-group flows in time dependent quantum field theory
    Dong, Xi
    Horn, Bart
    Silverstein, Eva
    Torroba, Gonzalo
    PHYSICAL REVIEW D, 2012, 86 (02)
  • [47] Emergent geometry in recursive renormalization group transformations
    Kim, Ki-Seok
    NUCLEAR PHYSICS B, 2020, 959
  • [48] Renormalization group flows for track function moments
    Jaarsma, Max
    Li, Yibei
    Moult, Ian
    Waalewijn, Wouter
    Zhu, Hua Xing
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [49] Renormalization group flows into phases with broken symmetry
    Salmhofer, M
    Honerkamp, C
    Metzner, W
    Lauscher, O
    PROGRESS OF THEORETICAL PHYSICS, 2004, 112 (06): : 943 - 970
  • [50] On subregion holographic complexity and renormalization group flows
    Department of Physics, Indian Institute of Technology, Kanpur
    208016, India
    arXiv,