On-line finite automata for addition in some numeration systems

被引:14
作者
Frougny, C
机构
[1] Univ Paris 08, F-75251 Paris 05, France
[2] LIAFA, F-75251 Paris, France
来源
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS | 1999年 / 33卷 / 01期
关键词
D O I
10.1051/ita:1999107
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider numeration systems where the base is a negative integer, or a complex number which is a root of a negative integer. We give parallel algorithms for addition in these numeration systems, from which we derive on-line algorithms realized by finite automate. A general construction relating addition in base beta and addition in base beta(m) is given. Results on addition in base beta = (m)root b, where b is a relative integer, follow. We also show that addition in base the golden ratio is computable by an on-line finite automaton, but is not parallelizable.
引用
收藏
页码:79 / 101
页数:23
相关论文
共 33 条
[1]  
Allouche JP, 1997, THEOR COMPUT SYST, V30, P285
[2]  
[Anonymous], INTRO SYMBOLIC DYNAM
[3]   Real/complex reconfigurable arithmetic using redundant complex number systems [J].
Aoki, T ;
Amada, H ;
Higuchi, T .
13TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1997, :200-207
[4]  
Avizienis A, 1961, IRE Trans Electron Comput EC, VEC-10, P389, DOI DOI 10.1109/TEC.1961.5219227
[5]  
BEAL MP, 1993, CODAGE SYMBOLIQUE
[6]  
BERSTEL J, 1982, ACTES ECOLE PRINTEMP, P177
[7]  
Berstel J., 1979, TEUBNER STUDIENBUCHE, V38
[8]  
Choffrut C., 1977, Theoretical Computer Science, V5, P325, DOI 10.1016/0304-3975(77)90049-4
[9]  
Chow C. Y., 1978, Proceedings of the 4th Symposium on Computer Arithmetic, P109
[10]   NEW REDUNDANT REPRESENTATIONS OF COMPLEX NUMBERS AND VECTORS [J].
DUPRAT, J ;
HERREROS, Y ;
KLA, S .
IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (07) :817-824