Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography

被引:45
作者
Dieleman, Christian D. [1 ]
Ding, Weiyi [1 ]
Wu, Lianjia [2 ]
Thakur, Neha [2 ]
Bespalov, Ivan [2 ]
Daiber, Benjamin [1 ]
Ekinci, Yasin [3 ]
Castellanos, Sonia [2 ]
Ehrler, Bruno [1 ]
机构
[1] AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[2] Adv Res Ctr Nanolithog, EUV Photoresists Grp, Sci Pk 106, NL-1098 XG Amsterdam, Netherlands
[3] Paul Scherrer Inst, Lab Micro & Nanotechnol, Forschungsstr 111, CH-5232 Villigen, Switzerland
关键词
ENERGY-TRANSFER; FILMS; EMISSION; PBSE; NANOSTRUCTURES; STABILITY;
D O I
10.1039/d0nr01077d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal quantum dots have found many applications and patterning them on micro- and nanoscale would open a new dimension of tunability for the creation of smaller scale (flexible) electronics or nanophotonic structures. Here we present a simple, general, one-step top-down patterning technique for colloidal quantum dots by means of direct optical or electron beam lithography. We find that both photons and electrons can induce a solubility switch of both PbS and CdSe quantum dot films. The solubility switch can be ascribed to cross-linking of the organic ligands, which we observe from exposure with deep-UV photons (5.5 eV) to extreme-UV photons (91.9 eV), and low-energy (3-70 eV) as well as highly energetic electrons (50 keV). The required doses for patterning are relatively low and feature sizes can be as small as tens of nanometers. The luminescence properties as well as carrier lifetimes remain similar after patterning.
引用
收藏
页码:11306 / 11316
页数:11
相关论文
共 56 条
[1]   Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer [J].
Adinolfi, Valerio ;
Kramer, Illan J. ;
Labelle, Andre J. ;
Sutherland, Brandon R. ;
Hoogland, S. ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (01) :356-362
[2]   Micron-Scale Patterning of High Quantum Yield Quantum Dot LEDs [J].
Azzellino, Giovanni ;
Freyria, Francesca S. ;
Nasilowski, Michel ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (07)
[3]   Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal [J].
Balazs, Daniel M. ;
Rizkia, Nisrina ;
Fang, Hong-Hua ;
Dirin, Dmitry N. ;
Momand, Jamo ;
Kooi, Bart J. ;
Kovalenko, Maksym V. ;
Loi, Maria Antonietta .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5626-5632
[4]   Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics [J].
Barkhouse, D. Aaron R. ;
Debnath, Ratan ;
Kramer, Illan J. ;
Zhitomirsky, David ;
Pattantyus-Abraham, Andras G. ;
Levina, Larissa ;
Etgar, Lioz ;
Graetzel, Michael ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2011, 23 (28) :3134-+
[5]   Quantitative evaluation of electron beam writing in passivated gold nanoclusters [J].
Bedson, TR ;
Palmer, RE ;
Jenkins, TE ;
Hayton, DJ ;
Wilcoxon, JP .
APPLIED PHYSICS LETTERS, 2001, 78 (13) :1921-1923
[6]  
Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
[7]   Optical Properties of Zincblende Cadmium Selenide Quantum Dots [J].
Capek, Richard Karel ;
Moreels, Iwan ;
Lambert, Karel ;
De Muynck, David ;
Zhao, Qiang ;
Vantomme, Andre ;
Vanhaecke, Frank ;
Hens, Zeger .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6371-6376
[8]   Integrating Quantum Dots and Dielectric Mie Resonators: A Hierarchical Metamaterial Inheriting the Best of Both [J].
Capretti, Antonio ;
Lesage, Arnon ;
Gregorkiewicz, Tom .
ACS PHOTONICS, 2017, 4 (09) :2187-2196
[9]   Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors [J].
Chou, Kenny F. ;
Dennis, Allison M. .
SENSORS, 2015, 15 (06) :13288-13325
[10]   Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials [J].
Crooker, SA ;
Hollingsworth, JA ;
Tretiak, S ;
Klimov, VI .
PHYSICAL REVIEW LETTERS, 2002, 89 (18)