Hybrid systems for personalized recommendations

被引:0
作者
Burke, R [1 ]
机构
[1] Depaul Univ, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA
来源
INTELLIGENT TECHNIQUES FOR WEB PERSONALIZATION | 2005年 / 3169卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A variety of techniques have been proposed and investigated for delivering personalized recommendations for electronic commerce and other web applications. To improve performance, these methods have sometimes been combined in hybrid recommenders. This chapter surveys the landscape of actual and possible hybrid recommenders, and summarizes experiments that compare a large set of hybrid recommendation designs.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 31 条
  • [11] BURKE R, 2001, WORKSH ICCBR 2001 VA
  • [12] BURKE R, UNPUB HYBRID RECOMME
  • [13] The FindMe approach to assisted browsing
    Burke, RD
    Hammond, KJ
    Young, BC
    [J]. IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1997, 12 (04): : 32 - 40
  • [14] Cheetham W, 2004, LECT NOTES COMPUT SC, V3155, P106
  • [15] FOLTZ PW, 1990, SIGOIS BUL, V11, P40, DOI 10.1145/91478.91486
  • [16] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [17] USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY
    GOLDBERG, D
    NICHOLS, D
    OKI, BM
    TERRY, D
    [J]. COMMUNICATIONS OF THE ACM, 1992, 35 (12) : 61 - 70
  • [18] An algorithmic framework for performing collaborative filtering
    Herlocker, JL
    Konstan, JA
    Borchers, A
    Riedl, J
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 230 - 237
  • [19] HERLOCKER JL, 2004, ACM T INFORMATIONS S, V22
  • [20] HILL W, 1995, CHI 95, P194