LANDAU-GINZBURG MODELS IN REAL MIRROR SYMMETRY

被引:0
作者
Walcher, Johannes [1 ,2 ]
机构
[1] McGill Univ, Montreal, PQ, Canada
[2] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland
关键词
Mirror symmetry; Landau-Ginsburg models; matrix factorizations; algebraic cycles; real enumerative geometry; CALABI-YAU MANIFOLDS; D-BRANES; DUALITY;
D O I
10.5802/aif.2796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, mirror symmetry for open strings has exhibited some new connections between symplectic and enumerative geometry (A-model) and complex algebraic geometry (B-model) that in a sense lie between classical and homological mirror symmetry. I review the role played in this story by matrix factorizations and the Calabi-Yau/Landau-Ginzburg correspondence.
引用
收藏
页码:2865 / 2883
页数:19
相关论文
共 44 条
[1]  
[Anonymous], 1993, J AM MATH SOC, DOI [DOI 10.1090/S0894-0347-1993-1179538-2, DOI 10.2307/2152798.MR1179538]
[2]  
BALLARD M., ARXIV11053177MATHAG
[3]   D-branes on the quintic [J].
Brunner, I ;
Douglas, MR ;
Lawrence, A ;
Römelsberger, C .
JOURNAL OF HIGH ENERGY PHYSICS, 2000, (08) :9-72
[4]  
BRUNNER I, ARXIVHEPTH0305133
[5]   Orientifolds of Gepner models [J].
Brunner, Ilka ;
Hori, Kentaro ;
Hosomichi, Kazuo ;
Walcher, Johannes .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02)
[6]  
Buchweitz R.-O., 2021, Math. Surveys and Monographs, V262
[7]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[8]   Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations [J].
Chiodo, Alessandro ;
Ruan, Yongbin .
INVENTIONES MATHEMATICAE, 2010, 182 (01) :117-165
[9]  
Doran B, 2007, PURE APPL MATH Q, V3, P61
[10]  
Fan H., ARXIV07124025MATHAG