Synthesis and Li-storage behavior of CrN nanoparticles

被引:32
作者
Das, B. [1 ]
Reddy, M. V. [1 ]
Rao, G. V. Subba [1 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
基金
新加坡国家研究基金会;
关键词
NEGATIVE-ELECTRODE MATERIALS; ANODE MATERIALS; ELECTROCHEMICAL PROPERTIES; ION BATTERIES; LITHIUM; REACTIVITY; IMPEDANCE; NITRIDES;
D O I
10.1039/c2ra21136j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bulk CrN nanoparticles are prepared by the thermal decomposition of a Cr-urea complex in a flowing NH3 + N-2 atmosphere and characterized by X-ray diffraction (XRD) and high resolution-transmission electron microscopy (HR-TEM) along with selective area electron diffraction (SAED) techniques. The Li-cycling performance of bulk CrN is evaluated by galvanostatic cycling and cyclic voltammetry on the cells with Li metal as counter electrode in the voltage range of 0.005-3.0 (3.5) V at ambient temperature. When cycled at 60 mA g(-1) (0.1 C) up to 3.0 V, the composition 55 : 30 : 15 (active material : carbon : binder) showed a first-cycle reversible capacity of 635 (+/- 10) mA h g(-1) (1.6 moles of Li). The reversible capacity of 500 (+/- 10) mA h g(-1) (1.23 moles of Li) is stable between 10 and 80 cycles. At 0.5 C, it showed a stable capacity of 350 (+/- 10) mA h g(-1) for 40 cycles and the original capacity is regained when cycled at 0.1 C rate after 160 cycles. The coulombic efficiency is found to be >96% in the range of 20-80 cycles. The low impedance at the discharge potential <1.3 V and high impedance at charge potential 3.0 V evaluated from the impedance spectra (EIS) showed the decomposition and formation of CrN during the 1st cycle. The apparent DLi+ obtained from EIS is in the range, 0.73-3.6 (+/- 0.1) 6 10(-14) cm(2) s(-1) during the first-cycle.
引用
收藏
页码:9022 / 9028
页数:7
相关论文
共 34 条
[1]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[2]   Structural and electrochemical properties of layered lithium nitridocuprates Li3-xCuxN [J].
Bach, S. ;
Pereira-Ramos, J. R. ;
Ducros, J. B. ;
Willmann, R. .
SOLID STATE IONICS, 2009, 180 (2-3) :231-235
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   Towards new negative electrode materials for Li-ion batteries:: Electrochemical properties of LiNiN [J].
Cabana, Jordi ;
Stoeva, Zlatka ;
Titman, Jeremy J. ;
Gregory, Duncan H. ;
Palacin, M. Rosa .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1676-1678
[5]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[6]  
Cho PJ, 1998, B KOR CHEM SOC, V19, P39
[7]   Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li [J].
Das, B. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :953-959
[8]   Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17505-17510
[9]   Nano-phase tin hollandites, K2(M2Sn6)O16 (M = Co, In) as anodes for Li-ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (04) :1171-1180
[10]   Nanoflake CoN as a high capacity anode for Li-ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Malar, P. ;
Osipowicz, Thomas ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
SOLID STATE IONICS, 2009, 180 (17-19) :1061-1068