The asymptotic number of binary codes and binary matroids

被引:6
作者
Wild, M [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Matieland, South Africa
关键词
asymptotic enumeration; binary codes; binary matroids; lattice of invariant subspaces;
D O I
10.1137/S0895480104445538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic number of nonequivalent binary n-codes is determined. This is also the asymptotic number of nonisomorphic binary matroids on n elements.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 8 条
[1]  
Aigner M., 1979, COMBINATORIAL THEORY
[2]   INVARIANT SUBSPACE LATTICE OF A LINEAR TRANSFORMATION [J].
BRICKMAN, L ;
FILLMORE, PA .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :810-&
[3]   On the asymptotic number of non-equivalent q-ary linear codes [J].
Hou, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 112 (02) :337-346
[4]   On the character of Sn acting on subspaces of Fqn [J].
Lax, RF .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :315-322
[5]   RIGID LINEAR BINARY-CODES [J].
LEFMANN, H ;
PHELPS, KT ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (01) :110-128
[6]  
OXLEY JG, 1997, MATROID THEORY
[7]   The asymptotic number of inequivalent binary codes and nonisomorphic binary matroids [J].
Wild, M .
FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (02) :192-202
[8]  
WILD M, ASYMPTOTIC NUMBER BI