COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS

被引:9
作者
Dilao, Rui [1 ]
Amigo, Jose [2 ]
机构
[1] IST, Dept Phys, NonLinear Dynam Grp, P-1049001 Lisbon, Portugal
[2] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Topological entropy; interval maps; symbolic dynamics; CHAOS; INTERVAL; DYNAMICS;
D O I
10.1142/S0218127412501520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an algorithm to determine recursively the lap number (minimal number of monotone pieces) of the iterates of unimodal maps of an interval with free end-points. For this family of maps, the kneading sequence does not determine the lap numbers. The algorithm is obtained by the sign analysis of the itineraries of the critical point and of the boundary points of the interval map. We apply this algorithm to the estimation of the growth number and the topological entropy of maps with direct and reverse bifurcations.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Topological entropy of the induced maps of the inverse limits with bonding maps [J].
Ye, XD .
TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (02) :113-118
[42]   GRAPH MAPS WITH ZERO TOPOLOGICAL ENTROPY AND SEQUENCE ENTROPY PAIRS [J].
Li, Jian ;
Liang, Xianjuan ;
Oprocha, Piotr .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (11) :4757-4770
[43]   Supremum topological sequence entropy of circle maps [J].
Kuang, Rui ;
Yang, Yini .
TOPOLOGY AND ITS APPLICATIONS, 2021, 295
[44]   A Simplified Algorithm for the Topological Entropy of Multimodal Maps [J].
Amigo, Jose M. ;
Gimenez, Angel .
ENTROPY, 2014, 16 (02) :627-644
[45]   On the properties of topological entropy on a compact family of maps [J].
A. N. Vetokhin .
Mathematical Notes, 2016, 99 :354-361
[46]   On the properties of topological entropy on a compact family of maps [J].
Vetokhin, A. N. .
MATHEMATICAL NOTES, 2016, 99 (3-4) :354-361
[47]   Topological entropy of a sequence of monotone maps on circles [J].
Zhu, YJ ;
Zhang, JL ;
He, LF .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (02) :373-382
[48]   Computation of Topological Entropy of Finite Representations of Maps [J].
Galias, Zbigniew .
2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2018, :533-536
[49]   TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS [J].
Carrasco-Olivera, Dante ;
Metzger Alvan, Roger ;
Morales Rojas, Carlos Arnoldo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10) :3461-3474
[50]   Topological structure and entropy of mixing graph maps [J].
Haranczyk, Grzegorz ;
Kwietniak, Dominik ;
Oprocha, Piotr .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :1587-1614