COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS

被引:9
作者
Dilao, Rui [1 ]
Amigo, Jose [2 ]
机构
[1] IST, Dept Phys, NonLinear Dynam Grp, P-1049001 Lisbon, Portugal
[2] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Topological entropy; interval maps; symbolic dynamics; CHAOS; INTERVAL; DYNAMICS;
D O I
10.1142/S0218127412501520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an algorithm to determine recursively the lap number (minimal number of monotone pieces) of the iterates of unimodal maps of an interval with free end-points. For this family of maps, the kneading sequence does not determine the lap numbers. The algorithm is obtained by the sign analysis of the itineraries of the critical point and of the boundary points of the interval map. We apply this algorithm to the estimation of the growth number and the topological entropy of maps with direct and reverse bifurcations.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Topological entropy of maps on the real line [J].
Cánovas, JS ;
Rodríguez, JM .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :735-746
[32]   On topological entropy of commuting interval maps [J].
Cánovas, JS ;
Linero, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (07) :1159-1165
[33]   On topological entropy of commuting tree maps [J].
Sun, Taixiang ;
Xi, Hongjian ;
Chen, Zhanhuo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (01) :167-170
[34]   On topological entropy of transitive triangular maps [J].
Stefankova, Marta .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (14) :2673-2679
[35]   Topological entropy and periods of graph maps [J].
Llibre, Jaume ;
Saghin, Radu .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :589-598
[36]   Topological entropy of Devaney chaotic maps [J].
Balibrea, F ;
Snoha, L .
TOPOLOGY AND ITS APPLICATIONS, 2003, 133 (03) :225-239
[37]   TOPOLOGICAL-ENTROPY FOR ANOSOV MAPS [J].
SUN, WX .
CHINESE SCIENCE BULLETIN, 1991, 36 (23) :1948-1952
[38]   Monotonicity of Topological Entropy for One-Parameter Families of Unimodal Mappings [J].
O. Yu. Volkova .
Ukrainian Mathematical Journal, 2003, 55 (11) :1733-1741
[39]   Parametric topological entropy of families of multivalued maps in topological spaces and induced hyperspace maps [J].
Andres, Jan ;
Ludvik, Pavel .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
[40]   Topological entropy of monotone maps and confluent maps on regular curves [J].
Kato, Hisao .
Topology Proceedings, Vol 28, No 2, 2004, 2004, 28 (02) :587-593