COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS

被引:9
作者
Dilao, Rui [1 ]
Amigo, Jose [2 ]
机构
[1] IST, Dept Phys, NonLinear Dynam Grp, P-1049001 Lisbon, Portugal
[2] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Topological entropy; interval maps; symbolic dynamics; CHAOS; INTERVAL; DYNAMICS;
D O I
10.1142/S0218127412501520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an algorithm to determine recursively the lap number (minimal number of monotone pieces) of the iterates of unimodal maps of an interval with free end-points. For this family of maps, the kneading sequence does not determine the lap numbers. The algorithm is obtained by the sign analysis of the itineraries of the critical point and of the boundary points of the interval map. We apply this algorithm to the estimation of the growth number and the topological entropy of maps with direct and reverse bifurcations.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Computing the topological entropy of shifts [J].
Spandl, Christoph .
MATHEMATICAL LOGIC QUARTERLY, 2007, 53 (4-5) :493-510
[22]   Computing the topological entropy of continuous maps with at most three different kneading sequences with applications to Parrondo's paradox [J].
Canovas, Jose S. ;
Munoz Guillermo, Maria .
CHAOS SOLITONS & FRACTALS, 2016, 83 :1-17
[23]   On Dynamics of Triangular Maps of the Square with Zero Topological Entropy [J].
Pravec, Vojtech .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) :761-768
[24]   On the total variation, topological entropy and sensitivity for interval maps [J].
Juang, Jonq ;
Shieh, Shih-Feng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1055-1067
[25]   FORMULAS FOR THE TOPOLOGICAL ENTROPY OF MULTIMODAL MAPS BASED ON MIN-MAX SYMBOLS [J].
Amigo, Jose M. ;
Gimenez, Angel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10) :3415-3434
[26]   Topological sequence entropy and topological dynamics of interval maps [J].
Canovas, Jose S. .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (01) :47-54
[27]   Topological entropy of transitive maps of the interval [J].
Block, Louis ;
Keesling, James .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (06) :535-544
[28]   On the topological entropy of a semigroup of continuous maps [J].
Wang, Yupan ;
Ma, Dongkui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) :1084-1100
[29]   Topological entropy for nonuniformly continuous maps [J].
Hasselblatt, Boris ;
Nitecki, Zbigniew ;
Propp, James .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (1-2) :201-213
[30]   Topological entropy of maps on regular curves [J].
Kato, Hisao .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) :1027-1031