COMPUTING THE TOPOLOGICAL ENTROPY OF UNIMODAL MAPS

被引:9
作者
Dilao, Rui [1 ]
Amigo, Jose [2 ]
机构
[1] IST, Dept Phys, NonLinear Dynam Grp, P-1049001 Lisbon, Portugal
[2] Univ Miguel Hernandez, Ctr Invest Operat, Elche 03202, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Topological entropy; interval maps; symbolic dynamics; CHAOS; INTERVAL; DYNAMICS;
D O I
10.1142/S0218127412501520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an algorithm to determine recursively the lap number (minimal number of monotone pieces) of the iterates of unimodal maps of an interval with free end-points. For this family of maps, the kneading sequence does not determine the lap numbers. The algorithm is obtained by the sign analysis of the itineraries of the critical point and of the boundary points of the interval map. We apply this algorithm to the estimation of the growth number and the topological entropy of maps with direct and reverse bifurcations.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Computing topological entropy for periodic sequences of unimodal maps [J].
Canovas, Jose S. ;
Munoz Guillermo, Maria .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :3119-3127
[2]   Computing the Topological Entropy of Multimodal Maps via Min-Max Sequences [J].
Amigo, Jose Maria ;
Dilao, Rui ;
Gimenez, Angel .
ENTROPY, 2012, 14 (04) :742-768
[3]   Generalized β-transformations and the entropy of unimodal maps [J].
Thompson, Daniel J. .
COMMENTARII MATHEMATICI HELVETICI, 2017, 92 (04) :777-800
[4]   Topological entropy of multivalued maps in topological spaces and hyperspaces [J].
Andres, Jan ;
Ludvik, Pavel .
CHAOS SOLITONS & FRACTALS, 2022, 160
[5]   Computing the Topological Entropy for Piecewise Monotonic Maps on the Interval [J].
Thomas Steinberger .
Journal of Statistical Physics, 1999, 95 :287-303
[6]   Computing the topological entropy for piecewise monotonic maps on the interval [J].
Steinberger, T .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :287-303
[7]   Topological entropy of induced circle maps on hyperspaces [J].
Ju, Hyonhui ;
Kim, Cholsan ;
Ri, Songhun .
TOPOLOGY AND ITS APPLICATIONS, 2023, 328
[8]   Topological entropy and adding machine maps [J].
Block, L ;
Keesling, J .
HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (04) :1103-1113
[9]   Topological entropy for set valued maps [J].
Lampart, Marek ;
Raith, Peter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) :1533-1537
[10]   COMPUTING THE TOPOLOGICAL-ENTROPY OF MAPS OF THE INTERVAL WITH 3 MONOTONE PIECES [J].
BLOCK, L ;
KEESLING, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :755-774