On the motion of a harmonically excited damped spring pendulum in an elliptic path

被引:46
作者
Amer, T. S. [1 ]
Bek, M. A. [2 ,3 ]
Abohamer, M. K. [2 ,3 ]
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta 3127, Egypt
[2] Horus Univ, Dept Basic Sci, Fac Engn, Dumyat 34518, Egypt
[3] Tanta Univ, Fac Engn, Dept Phys & Engn Math, Tanta 31734, Egypt
关键词
Vibrating systems; Resonances; Solvability conditions; Multiple scales technique; Rigid body dynamics; ASYMPTOTIC ANALYSIS; RESONANCES; VIBRATION; SYSTEM;
D O I
10.1016/j.mechrescom.2018.11.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work the problem of a nonlinear damped spring pendulum in which the motion of its pivot point in an elliptical path is investigated. The second end of the spring is connected with the body. A linear force acting along the pendulum arm besides two anticlockwise moments; one at the suspension point of the body with the damped spring and the other at the pivot point. One of the important perturbation techniques called the multiple scales (MS) technique is utilized to obtain the approximate solutions of the governing equations of motion till the third approximation. The modulation equations and the solvability conditions are obtained in view of the emerging resonance cases. The time history and the resonances curves are performed in some plots to show the good effect of the physical parameters on the behavior of the considered dynamical model. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 26 条
[1]   Non-linear control strategies for duffing systems [J].
Agrawal, AK ;
Yang, JN ;
Wu, JC .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (05) :829-841
[2]   On the vibrational analysis for the motion of a harmonically damped rigid body pendulum [J].
Amer, T. S. ;
Bek, M. A. ;
Abouhmr, M. K. .
NONLINEAR DYNAMICS, 2018, 91 (04) :2485-2502
[3]   On the Motion of Harmonically Excited Spring Pendulum in Elliptic Path Near Resonances [J].
Amer, T. S. ;
Bek, M. A. ;
Hamada, I. S. .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[4]   Chaotic responses of a harmonically excited spring pendulum moving in circular path [J].
Amer, T. S. ;
Bek, M. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3196-3202
[5]  
Amer T.S., 2017, Adv. Math. Phys, P13
[6]   On the motion of a pendulum attached with tuned absorber near resonances [J].
Amer, W. S. ;
Bek, M. A. ;
Abohamer, M. K. .
RESULTS IN PHYSICS, 2018, 11 :291-301
[7]   Asymptotic Analysis of Resonances in Nonlinear Vibrations of the 3-dof Pendulum [J].
Awrejcewicz J. ;
Starosta R. ;
Sypniewska-Kamińska G. .
Differential Equations and Dynamical Systems, 2013, 21 (1-2) :123-140
[8]   Asymptotic Analysis and Limiting Phase Trajectories in the Dynamics of Spring Pendulum [J].
Awrejcewicz, Jan ;
Starosta, Roman ;
Sypniewska-Kaminska, Grazyna .
APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 :161-173
[9]   On rotational solutions for elliptically excited pendulum [J].
Belyakov, Anton O. .
PHYSICS LETTERS A, 2011, 375 (25) :2524-2530
[10]  
Eissa M., 2006, Mathematical & Computational Applications, V11, P151