Enhanced high rate performance of Li[Li0.17Ni0.2Co0.05Mn0.58-xAlx]O2-0.5x cathode material for lithium-ion batteries

被引:25
|
作者
Wang, Y. L. [1 ]
Huang, X. [1 ]
Li, F. [1 ]
Cao, J. S. [1 ]
Ye, S. H. [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Chem Coll, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300071, Peoples R China
关键词
RICH LAYERED OXIDES; SURFACE MODIFICATION; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; RATE CAPABILITY; OXYGEN LOSS; WIND POWER; ENERGY; AL; SUBSTITUTION;
D O I
10.1039/c5ra03971a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pristine Li[Li0.17Ni0.2Co0.05Mn0.58]O-2 (LNCM) and Li[Li0.17Ni0.2Co0.05Mn0.58-xAlx]O2-0.5x (x - 0.01, 0.02 and 0.04) (LNCMA) as Li-rich cathode materials for lithium ion batteries were synthesized via a sol-gel route. Inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the composition, structure and morphology of the LNCM and LNCMA samples. The homogeneous dispersion of the element Al in the LNCMA samples was confirmed using energy dispersive spectroscopic (EDS) mapping. Compared with LNCM, the larger crystal cell volume of LNCMA was verified by XRD and TEM analysis. A blue shift of O1s and Mn2p peaks in the A2 sample was observed via XPS, demonstrating the partial substitution of Al3+ for Mn4+ ions. The electrochemical properties are examined by means of cyclic voltammetry and charge/discharge tests. In general, the Al-substituted samples exhibit a better electrochemical performance. Especially for the A2 sample, it presents an enhanced initial discharge capacity of similar to 300 mA h g(-1), accompanied with the better initial coulombic efficiency of 90.9%. For 5 C rate, the A2 sample delivers a higher discharge capacity of 168.9 mA h g(-1) in the initial cycle and 156.5 mA h g(-1) after 150 cycles, while for the pristine sample it is 126.5 and 98.8 mA h g(-1), respectively. The excellent electrochemical performance of the Al-substituted samples could be ascribed to the enlarged cell volume and improved structural stability resulting from the partial Al substitution.
引用
收藏
页码:49651 / 49656
页数:6
相关论文
共 50 条
  • [21] Ti-Doped Co-Free Li1.2Mn0.6Ni0.2O2 Cathode Materials with Enhanced Electrochemical Performance for Lithium-Ion Batteries
    Liu, Sining
    Yan, Xin
    Li, Pengyu
    Tian, Xinru
    Li, Sinan
    Tao, Yunwen
    Li, Pengwei
    Luo, Shaohua
    INORGANICS, 2024, 12 (03)
  • [22] Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries
    Jin, Xue
    Xu, Qunjie
    Yuan, Xiaolei
    Zhou, Luozeng
    Xia, Yongyao
    ELECTROCHIMICA ACTA, 2013, 114 : 605 - 610
  • [23] Synthesis and electrochemical performance of nano TiO2(B)-coated Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for lithium-ion batteries
    Gan, Yongping
    Wang, Yishun
    Han, Jianfeng
    Zhang, Liyuan
    Sun, Wei
    Xia, Yang
    Huang, Hui
    Zhang, Jun
    Liang, Chu
    Zhang, Wenkui
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (21) : 12962 - 12968
  • [24] Solid-state synthesis of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials for lithium-ion batteries
    Hao, Wenjuan
    Zhan, Hanhui
    Chen, Han
    Wang, Yanhong
    Tan, Qiangqiang
    Su, Fabing
    PARTICUOLOGY, 2014, 15 : 18 - 26
  • [25] Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+δ (0 ≤ x ≤ 0.15) cathode materials for lithium-ion batteries
    Liu, Juanjuan
    Wang, Jun
    Xia, Yonggao
    Zhou, Xufeng
    Saixi, Yaletu
    Liu, Zhaoping
    MATERIALS RESEARCH BULLETIN, 2012, 47 (03) : 807 - 812
  • [26] Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating
    Zhao, Li
    Sun, Yingying
    Song, Kexin
    Ding, Fei
    IONICS, 2020, 26 (09) : 4455 - 4462
  • [27] Hollow Microspherical Li[Li0.24Ni0.38Mn0.38]O2 as Cathode Material for Lithium-Ion Batteries with Excellent Electrochemical Performance
    Dou, Shumei
    Li, Ping
    Li, Huiqin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (10): : 9654 - 9668
  • [28] Surface modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with Li2O-B2O3-LiBr for lithium-ion batteries
    Wang, Lei
    Hu, Yun Hang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (09) : 4644 - 4651
  • [29] High-rate performance of LiNi0.5Mn1.45Al0.05O4 cathode material for lithium-ion batteries
    Wang, Li
    Sheng, Li
    Wang, Jin
    Xu, Hong
    Tian, Guangyu
    Li, Jiangang
    He, Xiangming
    IONICS, 2021, 27 (11) : 4639 - 4647
  • [30] Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries
    Ju, Jeong-Hun
    Ryu, Kwang-Sun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (30) : 7985 - 7992