Origin of tension-compression asymmetry in ultrafine-grained fcc metals

被引:10
作者
Tsuru, T. [1 ,2 ]
机构
[1] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, 2-4 Shirakata, Tokai, Ibaraki, Japan
[2] Kyoto Univ, ESISM, Sakyo Ku, Honmachi, Kyoto 6068501, Japan
关键词
BONDING ARB PROCESS; NANOCRYSTALLINE METALS; MECHANICAL-BEHAVIOR; DEFORMATION; STRENGTH; DISLOCATION; ALUMINUM; COPPER; ALLOY; SIZE;
D O I
10.1103/PhysRevMaterials.1.033604
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mechanism of anomalous tension-compression (T-C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T-C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The mechanism, which is different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T-C asymmetry between UFG Cu and Al.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Semidiscrete variational Peierls framework for dislocation core properties [J].
Bulatov, VV ;
Kaxiras, E .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4221-4224
[2]   Mechanical behavior of a bulk nanostructured iron alloy [J].
Carsley, JE ;
Fisher, A ;
Milligan, WW ;
Aifantis, EC .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1998, 29 (09) :2261-2271
[3]   Atomic-scale mechanisms of tension-compression asymmetry in a metallic glass [J].
Chen, L. Y. ;
Li, B. Z. ;
Wang, X. D. ;
Jiang, F. ;
Ren, Y. ;
Liaw, P. K. ;
Jiang, J. Z. .
ACTA MATERIALIA, 2013, 61 (06) :1843-1850
[4]   Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals [J].
Cheng, S ;
Spencer, JA ;
Milligan, WW .
ACTA MATERIALIA, 2003, 51 (15) :4505-4518
[5]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[6]   Mechanism for grain size softening in nanocrystalline Zn [J].
Conrad, H ;
Narayan, J .
APPLIED PHYSICS LETTERS, 2002, 81 (12) :2241-2243
[7]   Tension-compression asymmetry in nanocrystalline Cu: High strain rate vs. quasi-static deformation [J].
Dongare, Avinash M. ;
Rajendran, Arunachalam M. ;
LaMattina, Bruce ;
Zikry, Mohammed A. ;
Brenner, Donald W. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (02) :260-265
[8]   Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study [J].
Du, Jun-Ping ;
Wang, Yun-Jiang ;
Lo, Yu-Chieh ;
Wan, Liang ;
Ogata, Shigenobu .
PHYSICAL REVIEW B, 2016, 94 (10)
[9]   GRAIN-SIZE DEPENDENT HARDENING AND SOFTENING OF NANOCRYSTALLINE CU AND PD [J].
FOUGERE, GE ;
WEERTMAN, JR ;
SIEGEL, RW ;
KIM, S .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (12) :1879-1883
[10]   Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials [J].
Gutkin, MY ;
Ovid'ko, IA ;
Skiba, NV .
ACTA MATERIALIA, 2003, 51 (14) :4059-4071