Using high-resolution remote sensing data for habitat suitability models of Bromeliaceae in the city of Merida, Venezuela

被引:12
|
作者
Judith, Caroline [1 ,2 ,3 ]
Schneider, Julio V. [1 ,2 ,3 ,4 ]
Schmidt, Marco [1 ,2 ,3 ,4 ]
Ortega, Rengifo [5 ]
Gaviria, Juan [6 ,7 ]
Zizka, Georg [1 ,2 ,3 ,4 ]
机构
[1] Senckenberg Res Inst, D-60325 Frankfurt, Germany
[2] Nat Hist Museum Frankfurt, Dept Bot & Mol Evolut, D-60325 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Inst Ecol Evolut & Divers, D-60439 Frankfurt, Germany
[4] Biodivers & Climate Res Ctr BiK F, D-60325 Frankfurt, Germany
[5] Geomatikk AS, Oslo Sect, Okern, Norway
[6] Univ Los Andes, Fac Ciencias, Nucleo Hechicera, Inst Jardin Bot, Merida 5212, Venezuela
[7] Univ Munich, GeoBioctr LMU, D-80333 Munich, Germany
关键词
Andes; Bromeliaceae; Habitat suitability modelling; Satellite imagery; Tillandsia; Urban biodiversity; PREDICTING SPECIES DISTRIBUTIONS; VASCULAR EPIPHYTES; MONTANE FOREST; SAMPLE-SIZE; URBANIZATION; PERFORMANCE; TREES; CLASSIFICATION; PROJECTIONS; DISTURBANCE;
D O I
10.1016/j.landurbplan.2013.08.012
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Little information is available concerning the effects of the increasing urbanization on biodiversity in tropical regions. Species distribution modelling based on interpolated climate data is a widely applied, time- and cost-effective tool to estimate the potential species richness in a target area. However, high fragmentation, strong environmental gradients on a small-scale, and lack of fine-scale environmental data in tropical urban areas require alternative approaches. In this study we combined a rapid species assessment approach with environmental niche modelling based on high-resolution ASTER satellite imagery to predict species distributions of Bromeliaceae in the city of Merida, Venezuela. Twenty species of Bromeliaceae, e.g. 36% of the total bromeliad diversity of the state of Merida, were observed in the city, including seven species with CAM physiology. CAM species showed significantly higher occurrence probabilities in zones with higher soil sealing, whereas in C3 species a trend across soilsealing zones was not observed. The remarkable urban species richness of Bromeliaceae is here attributed to the species' different adaptive strategies, as well as to the strong elevation gradient of Merida city. Our species modelling approach provides new possibilities for the identification of indicator species in different urban built-up areas. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 50 条
  • [41] Fuzzy neighbourhood neural network for high-resolution remote sensing image segmentation
    Qu, Tingting
    Xu, Jindong
    Chong, Qianpeng
    Liu, Zhaowei
    Yan, Weiqing
    Wang, Xuan
    Song, Yongchao
    Ni, Mengying
    EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01)
  • [42] Real-Time Coding Scheme for High-Resolution Remote Sensing Images
    Deng Chenwei
    Zhao Baojun
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (03): : 444 - 448
  • [43] Estimation of Aboveground Phytomass of Plantations Using Digital Photogrammetry and High Resolution Remote Sensing Data
    Upgupta, Sujata
    Singh, Sarnam
    Tiwari, Poonam S.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2015, 43 (02) : 311 - 323
  • [44] Modeling Habitat Suitability of Migratory Birds from Remote Sensing Images Using Convolutional Neural Networks
    Su, Jin-He
    Piao, Ying-Chao
    Luo, Ze
    Yan, Bao-Ping
    ANIMALS, 2018, 8 (05):
  • [45] Monitoring Urban Green Infrastructure Changes and Impact on Habitat Connectivity Using High-Resolution Satellite Data
    Furberg, Dorothy
    Ban, Yifang
    Mortberg, Ulla
    REMOTE SENSING, 2020, 12 (18)
  • [46] Discrimination of dominant forest types for Matschie's tree kangaroo conservation in Papua New Guinea using high-resolution remote sensing data
    Stabach, J. A.
    Dabek, L. Tree
    Jensen, R.
    Wang, Y. Q.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (02) : 405 - 422
  • [47] The Habitat Map of Switzerland: A Remote Sensing, Composite Approach for a High Spatial and Thematic Resolution Product
    Price, Bronwyn
    Huber, Nica
    Nussbaumer, Anita
    Ginzler, Christian
    REMOTE SENSING, 2023, 15 (03)
  • [48] Road Network Extraction from High-Resolution Remote Sensing Image Using Homogenous Property and Shape Feature
    Li, Runsheng
    Cao, Fanzhi
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (01) : 51 - 58
  • [49] The Vanishing and Renewal Landscape of Urban Villages Using High-Resolution Remote Sensing: The Case of Haidian District in Beijing
    Wei, Hubin
    Cao, Yue
    Qi, Wei
    REMOTE SENSING, 2023, 15 (07)
  • [50] Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe
    Jevsenak, Jernej
    Klisz, Marcin
    Masek, Jiri
    Cada, Vojtech
    Janda, Pavel
    Svoboda, Miroslav
    Vostarek, Ondrej
    Treml, Vaclav
    van der Maaten, Ernst
    Popa, Andrei
    Popa, Ionel
    van der Maaten-Theunissen, Marieke
    Zlatanov, Tzvetan
    Scharnweber, Tobias
    Ahlgrimm, Svenja
    Stolz, Juliane
    Sochova, Irena
    Roibu, Catalin-Constantin
    Pretzsch, Hans
    Schmied, Gerhard
    Uhl, Enno
    Kaczka, Ryszard
    Wrzesinski, Piotr
    Senfeldr, Martin
    Jakubowski, Marcin
    Tumajer, Jan
    Wilmking, Martin
    Obojes, Nikolaus
    Rybnicek, Michal
    Levesque, Mathieu
    Potapov, Aleksei
    Basu, Soham
    Stojanovic, Marko
    Stjepanovic, Stefan
    Vitas, Adomas
    Arnic, Domen
    Metslaid, Sandra
    Neycken, Anna
    Prislan, Peter
    Hartl, Claudia
    Ziche, Daniel
    Horacek, Petr
    Krejza, Jan
    Mikhailov, Sergei
    Svetlik, Jan
    Kalisty, Aleksandra
    Kolar, Tomas
    Lavnyy, Vasyl
    Hordo, Maris
    Oberhuber, Walter
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 913