Using high-resolution remote sensing data for habitat suitability models of Bromeliaceae in the city of Merida, Venezuela

被引:12
|
作者
Judith, Caroline [1 ,2 ,3 ]
Schneider, Julio V. [1 ,2 ,3 ,4 ]
Schmidt, Marco [1 ,2 ,3 ,4 ]
Ortega, Rengifo [5 ]
Gaviria, Juan [6 ,7 ]
Zizka, Georg [1 ,2 ,3 ,4 ]
机构
[1] Senckenberg Res Inst, D-60325 Frankfurt, Germany
[2] Nat Hist Museum Frankfurt, Dept Bot & Mol Evolut, D-60325 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Inst Ecol Evolut & Divers, D-60439 Frankfurt, Germany
[4] Biodivers & Climate Res Ctr BiK F, D-60325 Frankfurt, Germany
[5] Geomatikk AS, Oslo Sect, Okern, Norway
[6] Univ Los Andes, Fac Ciencias, Nucleo Hechicera, Inst Jardin Bot, Merida 5212, Venezuela
[7] Univ Munich, GeoBioctr LMU, D-80333 Munich, Germany
关键词
Andes; Bromeliaceae; Habitat suitability modelling; Satellite imagery; Tillandsia; Urban biodiversity; PREDICTING SPECIES DISTRIBUTIONS; VASCULAR EPIPHYTES; MONTANE FOREST; SAMPLE-SIZE; URBANIZATION; PERFORMANCE; TREES; CLASSIFICATION; PROJECTIONS; DISTURBANCE;
D O I
10.1016/j.landurbplan.2013.08.012
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Little information is available concerning the effects of the increasing urbanization on biodiversity in tropical regions. Species distribution modelling based on interpolated climate data is a widely applied, time- and cost-effective tool to estimate the potential species richness in a target area. However, high fragmentation, strong environmental gradients on a small-scale, and lack of fine-scale environmental data in tropical urban areas require alternative approaches. In this study we combined a rapid species assessment approach with environmental niche modelling based on high-resolution ASTER satellite imagery to predict species distributions of Bromeliaceae in the city of Merida, Venezuela. Twenty species of Bromeliaceae, e.g. 36% of the total bromeliad diversity of the state of Merida, were observed in the city, including seven species with CAM physiology. CAM species showed significantly higher occurrence probabilities in zones with higher soil sealing, whereas in C3 species a trend across soilsealing zones was not observed. The remarkable urban species richness of Bromeliaceae is here attributed to the species' different adaptive strategies, as well as to the strong elevation gradient of Merida city. Our species modelling approach provides new possibilities for the identification of indicator species in different urban built-up areas. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 50 条
  • [1] High-resolution wave data for improving marine habitat suitability models
    Bertelli, Chiara M.
    Bennett, William G.
    Karunarathna, Harshinie
    Reeve, Dominic E.
    Unsworth, Richard K. F.
    Bull, James C.
    FRONTIERS IN MARINE SCIENCE, 2023, 9
  • [2] High-resolution remote sensing data improves models of species richness
    Camathias, Linda
    Bergamini, Ariel
    Kuechler, Meinrad
    Stofer, Silvia
    Baltensweiler, Andri
    APPLIED VEGETATION SCIENCE, 2013, 16 (04) : 539 - 551
  • [3] The method of using remote sensing high-resolution imagery data in cartographical study of seaports
    Klewski, Andrzej
    Sanecki, Jozef
    Maj, Konrad
    Stepien, Grzegorz
    Gmaj, Robert
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2010, 22 (94): : 33 - 38
  • [4] Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat-Tide-Semantic Segmentation Approach for Mangrove Mapping
    Sun, Ziyu
    Jiang, Weiguo
    Ling, Ziyan
    Zhong, Shiquan
    Zhang, Ze
    Song, Jie
    Xiao, Zhijie
    REMOTE SENSING, 2023, 15 (22)
  • [5] Building Extraction for Urban Infrastructure Mapping Using Deep Neural Networks and High-Resolution Remote Sensing Data
    Sharma, Surendra Kumar
    Sharma, Vivek
    Mishra, Vishal
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2025,
  • [6] Estimation of the Distribution of Tabebuia guayacan (Bignoniaceae) Using High-Resolution Remote Sensing Imagery
    Sanchez-Azofeifa, Arturo
    Rivard, Benoit
    Wright, Joseph
    Feng, Ji-Lu
    Li, Peijun
    Chong, Mei Mei
    Bohlman, Stephanie A.
    SENSORS, 2011, 11 (04) : 3831 - 3851
  • [7] Classification of High-Resolution Remote-Sensing Image Using OpenStreetMap Information
    Wan, Taili
    Lu, Hongyang
    Lu, Qikai
    Luo, Nianxue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) : 2305 - 2309
  • [8] Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data
    Jawak, Shridhar D.
    Luis, Alvarinho J.
    Pandit, Prashant H.
    Wankhede, Sagar F.
    Convey, Peter
    Fretwell, Peter T.
    REMOTE SENSING, 2023, 15 (05)
  • [9] Land Cover Changes in Open-Cast Mining Complexes Based on High-Resolution Remote Sensing Data
    Nascimento, Filipe Silveira
    Gastauer, Markus
    Souza-Filho, Pedro Walfir M.
    Nascimento, Wilson R.
    Santos, Diogo C.
    Costa, Marlene F.
    REMOTE SENSING, 2020, 12 (04)
  • [10] Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data?
    Cord, Anna
    Roedder, Dennis
    ECOLOGICAL APPLICATIONS, 2011, 21 (08) : 3285 - 3298