The moment index of minima (II)

被引:10
作者
Daley, DJ [1 ]
Goldie, CM
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Canberra, ACT 0200, Australia
[2] Univ Sussex, Brighton BN1 9RH, E Sussex, England
关键词
exponential index; moment index; regular variation;
D O I
10.1016/j.spl.2005.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The moment index kappa(X)=sup{k:E(X-k)<infinity} of a nonnegative random variable X has the property that kappa(min(X, Y))>= kappa(X)+ kappa(Y) for independent r.v.s X and Y. We characterize conditions under which equality holds for a given r.v.s. X and every independent nonnegative r.v. Y, and discuss extensions to related r.v.s and their distributions. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:831 / 837
页数:7
相关论文
共 5 条
[1]  
[Anonymous], 1989, REGULAR VARIATION
[2]   Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times [J].
Baltrunas, A ;
Daley, DJ ;
Klüppelberg, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :237-258
[3]  
Daley D.J., 2001, J APPL PROBAB, V38, P33
[4]   Diverging moments and parameter estimation [J].
Gonçalves, P ;
Riedi, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) :1382-1393