Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Class of Extended Mittag-Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus
    Parmar, Rakesh K.
    MATHEMATICS, 2015, 3 (04): : 1069 - 1082
  • [42] Fractional Inequalities Associated With a Generalized Mittag-Leffler Function and Applications
    Farid, Ghulam
    Mubeen, Shahid
    Set, Erhan
    FILOMAT, 2020, 34 (08) : 2683 - 2692
  • [43] On Refinement of Bounds of Fractional Integral Operators Containing Extended Generalized Mittag-Leffler Functions
    Demirel, Ayse Kuebra
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 279 - 300
  • [44] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253
  • [45] TURAN TYPE INEQUALITIES FOR CLASSICAL AND GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Mehrez, K.
    Sitnik, S. M.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 521 - 541
  • [46] Mittag-Leffler Functions and Their Applications
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [47] The Gruss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function
    Shao, Yabin
    Rahman, Gauhar
    Elmasry, Yasser
    Samraiz, Muhammad
    Kashuri, Artion
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [48] A FAMILY OF MEROMORPHIC FUNCTIONS INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Yan, Cai-Mei
    Liu, Jin-Lin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 943 - 951
  • [49] On Euler Type Integrals Involving Extended Mittag-Leffler Functions
    Joshi, Sunil
    Mittal, Ekta
    Pandey, Rupakshi Mishra
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (02): : 125 - 134
  • [50] A new characteristic property of Mittag-Leffler functions and fractional cosine functions
    Mei, Zhan-Dong
    Peng, Ji-Gen
    Jia, Jun-Xiong
    STUDIA MATHEMATICA, 2014, 220 (02) : 119 - 140