Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Generalized Fourier Multipliers via Mittag-Leffler Functions
    Hawawsheh, Laith
    Al-Salman, Ahmad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [32] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [33] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    Bansal, M. K.
    Jolly, N.
    Jain, R.
    Kumar, Devendra
    JOURNAL OF ANALYSIS, 2019, 27 (03) : 727 - 740
  • [34] Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function
    Andric, Maja
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [35] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    The Journal of Analysis, 2019, 27 : 727 - 740
  • [36] Matrix Mittag-Leffler functions of fractional nabla calculus
    Jonnalagadda, Jagan Mohan
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (02): : 128 - 140
  • [37] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [38] Certain inequalities of meromorphic univalent functions associated with the Mittag-Leffler function
    Aouf, Mohamed K.
    Mostafa, Adela O.
    JOURNAL OF APPLIED ANALYSIS, 2019, 25 (02) : 173 - 178
  • [39] EULER TYPE INTEGRAL INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Ahmed, Shakeel
    Khan, Mumtaz Ahmad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (03): : 479 - 487
  • [40] OPTIMALITY CONDITIONS INVOLVING THE MITTAG-LEFFLER TEMPERED FRACTIONAL DERIVATIVE
    Almeida, Ricardo
    Luisa Morgado, M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 519 - 534