Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
    Sun, Wenbing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4985 - 4998
  • [22] Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function
    Zhou, Shuang-Shuang
    Farid, Ghulam
    Ahmad, Ayyaz
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [23] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [24] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [25] BOUNDS OF FRACTIONAL INTEGRAL OPERATORS CONTAINING MITTAG-LEFFLER FUNCTION
    Farid, Ghulam
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 133 - 142
  • [26] Integral Equations Involving Generalized Mittag-Leffler Function
    Desai, R.
    Salehbhai, I. A.
    Shukla, A. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (05) : 712 - 721
  • [27] Mittag-Leffler functions in superstatistics
    dos Santos, Maike A. F.
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [28] Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag-Leffler Function
    Chen, Dong
    Mehmood, Sajid
    Farid, Ghulam
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (12):
  • [29] Geometric properties of an integral operator associated with Mittag-Leffler functions
    Porwal, Saurabh
    Magesh, Nanjundan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [30] On Extended General Mittag-Leffler Functions and Certain Inequalities
    Mihai, Marcela, V
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Du, Tingsong
    Kashuri, Artion
    Noor, Khalida Inayat
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 17