Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Study of fractional integral inequalities involving Mittag-Leffler functions via convexity
    Zhihua Chen
    Ghulam Farid
    Maryam Saddiqa
    Saleem Ullah
    Naveed Latif
    Journal of Inequalities and Applications, 2020
  • [2] Boundedness of fractional integral operators containing Mittag-Leffler functions via (s, m)-convexity
    Farid, Ghulam
    Akbar, Saira Bano
    Rehman, Shafiq Ur
    Pecaric, Josip
    AIMS MATHEMATICS, 2020, 5 (02): : 966 - 978
  • [3] STARLIKENESS AND CONVEXITY OF INTEGRAL OPERATORS INVOLVING MITTAG-LEFFLER FUNCTIONS
    Frasin, B. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 913 - 920
  • [4] Some integral inequalities involving Mittag-Leffler functions for tgs-convex functions
    Farid, Ghulam
    Zahra, Moquddsa
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (05)
  • [5] On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions
    Saddiqa, Maryam
    Farid, Ghulam
    Ullah, Saleem
    Jung, Chahn Yong
    Shim, Soo Hak
    AIMS MATHEMATICS, 2021, 6 (06): : 6454 - 6468
  • [6] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Ghulam Abbas
    Khuram Ali Khan
    Ghulam Farid
    Atiq Ur Rehman
    Journal of Inequalities and Applications, 2017
  • [7] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Abbas, Ghulam
    Khan, Khuram Ali
    Farid, Ghulam
    Rehman, Atiq Ur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [8] A Generalized Convexity and Inequalities Involving the Unified Mittag-Leffler Function
    Farid, Ghulam
    Tariq, Hafsa
    Tawfiq, Ferdous M. O.
    Ro, Jong-Suk
    Zainab, Saira
    AXIOMS, 2023, 12 (08)
  • [9] Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function
    Nonlaopon, Kamsing
    Farid, Ghulam
    Yasmeen, Hafsa
    Shah, Farooq Ahmed
    Jung, Chahn Yong
    SYMMETRY-BASEL, 2022, 14 (05):
  • [10] Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions
    Farid, Ghulam
    Andric, Maja
    Saddiqa, Maryam
    Pecaric, Josip
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2020, 5 (06): : 7332 - 7349