Automated parcellation of the brain surface generated from magnetic resonance images

被引:10
作者
Li, Wen [1 ,2 ]
Andreasen, Nancy C. [3 ,4 ]
Nopoulos, Peg [3 ,4 ]
Magnotta, Vincent A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Psychiat, Iowa City, IA 52242 USA
[4] Lucille Carver Coll Med, Iowa City, IA USA
关键词
cerebral cortex; cortical parcellation; surface registration; spherical demons; cytoarchitecture; magnetic resonance imaging; HUMAN CEREBRAL-CORTEX; REGISTRATION; SCHIZOPHRENIA; MORPHOLOGY; SYSTEM; GYRUS;
D O I
10.3389/fninf.2013.00023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have developed a fast and reliable pipeline to automatically parcellate the cortical surface into sub-regions. The pipeline can be used to study brain changes associated with psychiatric and neurological disorders. First, a genus zero cortical surface for one hemisphere is generated from the magnetic resonance images at the parametric boundary of the white matter and the gray matter. Second, a hemisphere-specific surface atlas is registered to the cortical surface using geometry features mapped in the spherical domain. The deformation field is used to warp statistic labels from the atlas to the subject surface. The Dice index of the labeled surface area is used to evaluate the similarity between the automated labels with the manual labels on the subject. The average Dice across 24 regions on 14 testing subjects is 0.86. Alternative evaluations have also chosen to show the accuracy and flexibility of the present method. The point-wise accuracy of 14 testing subjects is above 86% in average. The experiment shows that the present method is highly consistent with FreeSurfer (>99% of the surface area), using the same set of labels.
引用
收藏
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 2006, BRODMANNS LOCALISATI
[2]   Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints [J].
Auzias, Guillaume ;
Colliot, Olivier ;
Glaunes, Joan Alexis ;
Perrot, Matthieu ;
Mangin, Jean-Francois ;
Trouve, Alain ;
Baillet, Sylvain .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (06) :1214-1227
[3]  
BOOKSTEIN FL, 1991, LECT NOTES COMPUT SC, V511, P326, DOI 10.1007/BFb0033763
[4]   MRI-based topographic parcellation of human neocortex: An anatomically specified method with estimate of reliability [J].
Caviness, VS ;
Meyer, J ;
Makris, N ;
Kennedy, DN .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1996, 8 (06) :566-587
[5]  
Cocosco C., 1997, NEUROIMAGE, V5, pS425, DOI DOI 10.1016/S1053-8119(97)80018-3
[6]  
Collins DL, 1998, LECT NOTES COMPUT SC, V1496, P974, DOI 10.1007/BFb0056286
[7]  
Collins DL, 1999, LECT NOTES COMPUT SC, V1613, P210
[8]   Human frontal cortex: An MRI-based parcellation method [J].
Crespo-Facorro, B ;
Kim, JJ ;
Andreasen, NC ;
O'Leary, DS ;
Wiser, AK ;
Bailey, JM ;
Harris, G ;
Magnotta, VA .
NEUROIMAGE, 1999, 10 (05) :500-519
[9]   Cerebral cortex: a topographic segmentation method using magnetic resonance imaging [J].
Crespo-Facorro, B ;
Kim, JJ ;
Andreasen, NC ;
Spinks, R ;
O'Leary, DS ;
Bockholt, HJ ;
Harris, G ;
Magnotta, VA .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2000, 100 (02) :97-126
[10]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980