Charge carriers in rechargeable batteries: Na ions vs. Li ions

被引:735
作者
Hong, Sung You [1 ]
Kim, Youngjin [2 ]
Park, Yuwon [2 ,3 ]
Choi, Aram [3 ]
Choi, Nam-Soon [3 ]
Lee, Kyu Tae [3 ]
机构
[1] UNIST, Sch Nano Biosci & Chem Engn, Ulsan 689798, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
[3] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL INSERTION PROPERTIES; NA2COP2O7 PYROPHOSPHATE CATHODE; POSITIVE-ELECTRODE MATERIALS; CAPACITY ANODE MATERIALS; SODIUM-ION; IN-SITU; CRYSTAL-STRUCTURE; ENERGY-STORAGE; X-RAY; VANADIUM FLUOROPHOSPHATE;
D O I
10.1039/c3ee40811f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We discuss the similarities and dissimilarities of sodium- and lithium-ion batteries in terms of negative and positive electrodes. Compared to the comprehensive body of work on lithium-ion batteries, research on sodium-ion batteries is still at the germination stage. Since both sodium and lithium are alkali metals, they share similar chemical properties including ionicity, electronegativity and electrochemical reactivity. They accordingly have comparable synthetic protocols and electrochemical performances, which indicates that sodium-ion batteries can be successfully developed based on previously applied approaches or methods in the lithium counterpart. The electrode materials in Li-ion batteries provide the best library for research on Na-ion batteries because many Na-ion insertion hosts have their roots in Li-ion insertion hosts. However, the larger size and different bonding characteristics of sodium ions influence the thermodynamic and/or kinetic properties of sodium-ion batteries, which leads to unexpected behaviour in electrochemical performance and reaction mechanism, compared to lithiumion batteries. This perspective provides a comparative overview of the major developments in the area of positive and negative electrode materials in both Li-ion and Na-ion batteries in the past decade. Highlighted are concepts in solid state chemistry and electrochemistry that have provided new opportunities for tailored design that can be extended to many different electrode materials for sodium-ion batteries.
引用
收藏
页码:2067 / 2081
页数:15
相关论文
共 111 条
[1]   Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells [J].
Abouimrane, Ali ;
Weng, Wei ;
Eltayeb, Hussameldin ;
Cui, Yanjie ;
Niklas, Jens ;
Poluektov, Oleg ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9632-9638
[2]   Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method [J].
Ado, K ;
Tabuchi, M ;
Kobayashi, H ;
Kageyama, H ;
Nakamura, O ;
Inaba, Y ;
Kanno, R ;
Takagi, M ;
Takeda, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (07) :L177-L180
[3]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[4]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[5]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[6]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[7]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]
[8]   Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1394-A1398
[9]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[10]   A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Lu, Jiechen ;
Ye, Tian ;
Kajiyama, Masataka ;
Chung, Sai-Cheong ;
Yabuuchi, Naoaki ;
Komaba, Shinichi ;
Yamada, Atsuo .
RSC ADVANCES, 2013, 3 (12) :3857-3860