The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression

被引:45
作者
Almassalha, L. M. [1 ]
Tiwari, A. [2 ]
Ruhoff, P. T. [3 ]
Stypula-Cyrus, Y. [1 ]
Cherkezyan, L. [1 ]
Matsuda, H. [1 ]
Dela Cruz, M. A. [2 ]
Chandler, J. E. [1 ]
White, C. [1 ]
Maneval, C. [1 ]
Subramanian, H. [1 ]
Szleifer, I. [1 ,4 ,5 ]
Roy, H. K. [2 ]
Backman, V. [1 ,5 ]
机构
[1] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[2] Boston Univ, Gastroenterol Sect, Boston Med Ctr, Sch Med, Boston, MA 02118 USA
[3] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense M, Denmark
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会;
关键词
FIELD CARCINOGENESIS; TRANSCRIPTIONAL REGULATION; ARCHITECTURAL COMPLEXITY; CANCER; ORGANIZATION; PATTERNS; DNA; NANOCYTOLOGY; COLONOCYTES; MUTATIONS;
D O I
10.1038/srep41061
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis.
引用
收藏
页数:13
相关论文
共 63 条
  • [51] Nanoscale Cellular Changes in Field Carcinogenesis Detected by Partial Wave Spectroscopy
    Subramanian, Hariharan
    Roy, Hemant K.
    Pradhan, Prabhakar
    Goldberg, Michael J.
    Muldoon, Joseph
    Brand, Randall E.
    Sturgis, Charles
    Hensing, Thomas
    Ray, Daniel
    Bogojevic, Andrej
    Mohammed, Jameel
    Chang, Jeen-Soo
    Backman, Vadim
    [J]. CANCER RESEARCH, 2009, 69 (13) : 5357 - 5363
  • [52] Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells
    Subramanian, Hariharan
    Pradhan, Prabhakar
    Liu, Yang
    Capoglu, Ilker R.
    Li, Xu
    Rogers, Jeremy D.
    Heifetz, Alexander
    Kunte, Dhananjay
    Roy, Hemant K.
    Taflove, Allen
    Backman, Vadim
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (51) : 20118 - 20123
  • [53] Epigenetic Reprogramming in Cancer
    Suva, Mario L.
    Riggi, Nicolo
    Bernstein, Bradley E.
    [J]. SCIENCE, 2013, 339 (6127) : 1567 - 1570
  • [54] Relationship between tumor grade and computed architectural complexity in breast cancer specimens
    Tambasco, Mauro
    Magliocco, Anthony M.
    [J]. HUMAN PATHOLOGY, 2008, 39 (05) : 740 - 746
  • [55] Quantifying the architectural complexity of microscopic images of histology specimens
    Tambasco, Mauro
    Costello, Bridget M.
    Kouznetsov, Alexei
    Yau, Annie
    Magliocco, Anthony M.
    [J]. MICRON, 2009, 40 (04) : 486 - 494
  • [56] Tan CM, 2013, NAT NANOTECHNOL, V8, P602, DOI [10.1038/nnano.2013.132, 10.1038/NNANO.2013.132]
  • [57] The Cancer Genome Atlas Network, 2012, Nature, V487, P330, DOI [DOI 10.1038/NATURE11252, 10.1038/nature11252]
  • [58] Cross-linking of DNA through HMGA1 suggests a DNA scaffold
    Vogel, Benjamin
    Loeschberger, Anna
    Sauer, Markus
    Hock, Robert
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (16) : 7124 - 7133
  • [59] Higher Order Chromatin Modulator Cohesin SA1 Is an Early Biomarker for Colon Carcinogenesis: Race-Specific Implications
    Wali, Ramesh K.
    Momi, Navneet
    Dela Cruz, Mart
    Calderwood, Audrey H.
    Stypula-Cyrus, Yolanda
    Almassalha, Luay
    Chhaparia, Anuj
    Weber, Christopher R.
    Radosevich, Andrew
    Tiwari, Ashish K.
    Latif, Bilal
    Backman, Vadim
    Roy, Hemant K.
    [J]. CANCER PREVENTION RESEARCH, 2016, 9 (11) : 844 - 854
  • [60] Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer
    Wang, Kai
    Yuen, Siu Tsan
    Xu, Jiangchun
    Lee, Siu Po
    Yan, Helen H. N.
    Shi, Stephanie T.
    Siu, Hoi Cheong
    Deng, Shibing
    Chu, Kent Man
    Law, Simon
    Chan, Kok Hoe
    Chan, Annie S. Y.
    Tsui, Wai Yin
    Ho, Siu Lun
    Chan, Anthony K. W.
    Man, Jonathan L. K.
    Foglizzo, Valentina
    Ng, Man Kin
    Chan, April S.
    Ching, Yick Pang
    Cheng, Grace H. W.
    Xie, Tao
    Fernandez, Julio
    Li, Vivian S. W.
    Clevers, Hans
    Rejto, Paul A.
    Mao, Mao
    Leung, Suet Yi
    [J]. NATURE GENETICS, 2014, 46 (06) : 573 - 582