COEXISTENCE AND STABILITY OF SOLUTIONS FOR A CLASS OF REACTION-DIFFUSION SYSTEMS

被引:0
作者
Zhang, Zhenbu [1 ]
机构
[1] Jackson State Univ, Dept Math, Jackson, MS 39217 USA
关键词
Coexistence; stability; reaction-diffusion; eigenvalue problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the situation of two species of predators competing for one species of prey. We use comparison principles to study the global existence, the existence of non-trivial steady states and their stability.
引用
收藏
页数:16
相关论文
共 18 条
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1990, DIFFERENTIAL INTEGRA, V3, P13
[4]   The evolution of slow dispersal rates: a reaction diffusion model [J].
Dockery, J ;
Hutson, V ;
Mischaikow, K ;
Pernarowski, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (01) :61-83
[5]   A parabolic system modeling microbial competition in an unmixed bio-reactor [J].
Dung, L ;
Smith, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (01) :59-91
[6]   UNIQUENESS AND NONUNIQUENESS OF COEXISTENCE STATES IN THE LOTKA-VOLTERRA COMPETITION MODEL [J].
GUI, CF ;
LOU, YA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (12) :1571-1594
[7]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[9]   ON A SYSTEM OF REACTION-DIFFUSION EQUATIONS ARISING FROM COMPETITION IN AN UNSTIRRED CHEMOSTAT [J].
HSU, SB ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (04) :1026-1044
[10]  
KIELHOFER H, 1974, ARCH RATION MECH AN, V57, P150, DOI 10.1007/BF00248417