Painleve analysis and symbolic computation for a nonlinear Schrodinger equation with dissipative perturbations

被引:0
作者
Bo, T
Gao, YT
机构
[1] LANZHOU UNIV,DEPT COMP SCI,LANZHOU 730000,PEOPLES R CHINA
[2] LANZHOU UNIV,INST SCI & ENGN COMPUTAT,LANZHOU 730000,PEOPLES R CHINA
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 1996年 / 51卷 / 03期
关键词
nonlinear Schrodinger equation with dissipative perturbations; symbolic computation; Painleve analysis; Backlund transformation; mathematical method in physics;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nonlinear Schrodinger equations with small dissipative perturbations are of current importance in modeling weakly nonlinear dispersive media with dissipation. In this paper, the Painleve formulation with symbolic computation is presented for one of those equations. An auto-Backlund transformation and some exact solutions are explicitly constructed.
引用
收藏
页码:167 / 170
页数:4
相关论文
共 10 条
[1]   ADIABATIC INVARIANTS THEORY OF NEAR-INTEGRABLE SYSTEMS WITH DAMPING [J].
BULLOUGH, RK ;
FORDY, AP ;
MANAKOV, SV .
PHYSICS LETTERS A, 1982, 91 (03) :98-100
[2]  
DIPRIMA R, 1971, J FLUID MECH, V48, P705
[3]  
FABRIKANT AL, 1984, ZH EKSP TEOR FIZ, V86, P470
[4]  
GOREV V, 1976, RADIOFIZIKA, V19, P691
[5]   STABILITY OF SPATIALLY PERIODIC SUPERCRITICAL FLOWS IN HYDRODYNAMICS [J].
KOGELMAN, S ;
DIPRIMA, RC .
PHYSICS OF FLUIDS, 1970, 13 (01) :1-&
[6]   EVOLUTION OF NONSOLITON AND QUASI-CLASSICAL WAVETRAINS IN NONLINEAR SCHRODINGER AND KORTEWEG-DEVRIES EQUATIONS WITH DISSIPATIVE PERTURBATIONS [J].
MALOMED, BA .
PHYSICA D, 1987, 29 (1-2) :155-172
[7]  
MALOMED BA, 1982, TEOR MAT FIZ, V51, P34
[8]   NON-LINEAR INSTABILITY THEORY FOR A WAVE SYSTEM IN PLANE POISEUILLE FLOW [J].
STEWARTSON, K ;
STUART, JT .
JOURNAL OF FLUID MECHANICS, 1971, 48 (AUG16) :529-+
[9]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[10]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS .2. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE [J].
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1405-1413