A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear

被引:45
作者
Peng, Bingxiao [1 ]
Bergs, Thomas [1 ]
Schraknepper, Daniel [1 ]
Klocke, Fritz [1 ]
Doebbeler, Benjamin [1 ]
机构
[1] Rhein Westfal TH Aachen, Lab Machine Tools & Prod Engn WZL, Campus Blvd 30, D-52074 Aachen, Germany
来源
17TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (17TH CIRP CMMO) | 2019年 / 82卷
关键词
hybrid approach; machine learning; cutting process; FEM; SYSTEM;
D O I
10.1016/j.procir.2019.04.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cutting process is a complex nonlinear system. Predicting such a system with conventional regression models is inefficient. In this paper, a hybrid approach using deep neural networks (DNN) is proposed to predict the specific cutting forces. With the aim of obtaining the hybrid training data, orthogonal cutting tests and 2D FEM chip formation simulations have been performed under diverse cutting parameters, tool geometries and tool wear conditions. Predictive models using a DNN and a conventional linear regression method were established. In comparison with the conventional linear regression method, the hybrid model using the machining learning is more accurate. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 17 条
[1]  
[Anonymous], Hands-On Machine Learning with Scikit-Learn and TensorFlow
[2]  
Arisoy Y. M., 2014, MAT MANUFACTURING PR, V30, P425
[3]   Recent advances in modelling of metal machining processes [J].
Arrazola, P. J. ;
Oezel, T. ;
Umbrello, D. ;
Davies, M. ;
Jawahir, I. S. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2013, 62 (02) :695-718
[4]   An artificial-neural-networks-based in-process tool wear prediction system in milling operations [J].
Chen, JC ;
Chen, JC .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (5-6) :427-434
[5]   Prediction of specific force coefficients from a FEM cutting model [J].
Gonzalo, O. ;
Jauregi, H. ;
Uriarte, L. G. ;
Lopez de Lacalle, L. N. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 43 (3-4) :348-356
[6]   In-process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis [J].
Gouarir, A. ;
Martinez-Arellano, G. ;
Terrazas, G. ;
Benardos, P. ;
Ratchev, S. .
8TH CIRP CONFERENCE ON HIGH PERFORMANCE CUTTING (HPC 2018), 2018, 77 :501-504
[7]   Tool-based inverse determination of material model of Direct Aged Alloy 718 for FEM cutting simulation [J].
Klocke, F. ;
Doebbeler, B. ;
Peng, B. ;
Schneider, S. A. M. .
8TH CIRP CONFERENCE ON HIGH PERFORMANCE CUTTING (HPC 2018), 2018, 77 :54-57
[8]  
Klocke F, 2011, RWTHEDITION, P1, DOI 10.1007/978-3-642-11979-8_1
[9]  
Konig W, 1973, SPECIFIC CUTTING FOR
[10]  
Krueger D.D., 1989, METALL APPL P INT S, P279, DOI [10.7449/1989/Superalloys_1989_279_296, DOI 10.7449/1989/SUPERALLOYS, 10.7449/1989/superalloys1989279296, DOI 10.7449/1989/SUPERALLOYS1989279296]