Binomial squares in pure cubic number fields

被引:2
作者
Lemmermeyer, Franz
机构
[1] not available, 73489 Jagstzell
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2012年 / 24卷 / 03期
关键词
D O I
10.5802/jtnb.817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let .K = Q(omega), with omega(3) = m a positive integer, be a pure cubic number field. We show that the elements alpha is an element of K-x whose squares have the form a - omega for rational numbers a form a group isomorphic to the group of rational points on the elliptic curve E-m : y(2) = x(3) - m. This result will allow us to construct unramified quadratic extensions of pure cubic number fields K.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 16 条
  • [1] Barrucand P., 1970, J. Number Theory, V2, P7, DOI [10.1016/0022-314X(70)90003-X, DOI 10.1016/0022-314X(70)90003-X]
  • [2] Bhargava M., ARXIV10061002V2
  • [3] BILLING G., 1938, NOVA ACTA REG SOC 4, V11
  • [4] HEURISTICS ON CLASS-GROUPS - SOME GOOD PRIMES ARE NOT TOO GOOD
    COHEN, H
    MARTINET, J
    [J]. MATHEMATICS OF COMPUTATION, 1994, 63 (207) : 329 - 334
  • [5] Cohn Harvey, 1978, A Classical Invitation to Algebraic Numbers and Class Fields
  • [6] COMPUTATION OF 2-RANK OF PURE CUBIC FIELDS
    EISENBEIS, H
    FREY, G
    OMMERBORN, B
    [J]. MATHEMATICS OF COMPUTATION, 1978, 32 (142) : 559 - 569
  • [7] Euler Leonhard, 1770, VOLLSTANDIGE ANLEITU
  • [8] Honda T., 1971, J. Number Theory, V3, P7, DOI DOI 10.1016/0022-314X(71)90045-X
  • [9] Husemoller D., 2004, ELLIPTIC CURVES
  • [10] LAGRANGE J.-L., 1769, MEM ACAD SCI BERLIN