Diagonalizing the Ricci Tensor

被引:2
作者
Krishnan, Anusha M. [1 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie Bldg, Syracuse, NY 13244 USA
关键词
Ricci tensor; Diagonalization; Compact semisimple Lie algebra; Homogeneous space; Cohomogeneity one manifold; Ricci Flow; COHOMOGENEITY ONE; FLOW; CURVATURE;
D O I
10.1007/s12220-020-00495-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a basis of a semisimple Lie algebra of compact type, for which any diagonal left-invariant metric has a diagonal Ricci tensor, is characterized by the Lie algebraic condition of being "nice". Namely, the bracket of any two basis elements is a multiple of another basis element. This extends the work of Lauret and Will (Proc Am Math Soc 141(10):3651-3663, 2013) on nilpotent Lie algebras. The result follows from a more general characterization for diagonalizing the Ricci tensor for homogeneous spaces. Finally, we also study the Ricci flow behavior of diagonal metrics on cohomogeneity one manifolds.
引用
收藏
页码:5638 / 5658
页数:21
相关论文
共 13 条
[1]  
Angenent S, 2004, MATH RES LETT, V11, P493
[2]   Degenerate neckpinches in Ricci flow [J].
Angenent, Sigurd B. ;
Isenberg, James ;
Knopf, Dan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 709 :81-117
[3]   Four-dimensional cohomogeneity one Ricci flow and nonnegative sectional curvature [J].
Bettiol, Renato G. ;
Krishnan, Anusha M. .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (03) :511-527
[4]   Diagonalizing cohomogeneity-one Einstein metrics [J].
Dammerman, Brandon .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (09) :1271-1284
[5]   Curvature and symmetry of Milnor spheres [J].
Grove, K ;
Ziller, W .
ANNALS OF MATHEMATICS, 2000, 152 (01) :331-367
[6]   Cohomogeneity one manifolds with positive Ricci curvature [J].
Grove, K ;
Ziller, W .
INVENTIONES MATHEMATICAE, 2002, 149 (03) :619-646
[7]  
Grove K, 2006, ANN SCUOLA NORM-SCI, V5, P159
[8]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[9]   Ricci flow neckpinches without rotational symmetry [J].
Isenberg, James ;
Knopf, Dan ;
Sesum, Natasa .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (12) :1860-1894
[10]   Backwards Uniqueness for the Ricci Flow [J].
Kotschwar, Brett L. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (21) :4064-4097