diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering

被引:140
作者
Weber, Lukas M. [1 ,2 ]
Nowicka, Malgorzata [1 ,2 ,3 ]
Soneson, Charlotte [1 ,2 ,4 ,5 ]
Robinson, Mark D. [1 ,2 ]
机构
[1] Univ Zurich, Inst Mol Life Sci, CH-8057 Zurich, Switzerland
[2] Univ Zurich, SIB, CH-8057 Zurich, Switzerland
[3] F Hoffmann La Roche & Cie AG, CH-4070 Basel, Switzerland
[4] Friedrich Miescher Inst Biomed Res, CH-4058 Basel, Switzerland
[5] SIB, CH-4058 Basel, Switzerland
关键词
MASS CYTOMETRY; EXPRESSION ANALYSIS; CELL; FLOW; IDENTIFICATION;
D O I
10.1038/s42003-019-0415-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-dimensional flow and mass cytometry allow cell types and states to be characterized in great detail by measuring expression levels of more than 40 targeted protein markers per cell at the single-cell level. However, data analysis can be difficult, due to the large size and dimensionality of datasets as well as limitations of existing computational methods. Here, we present diffcyt, a new computational framework for differential discovery analyses in high-dimensional cytometry data, based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics. Our approach provides improved statistical performance, including for rare cell populations, along with flexible experimental designs and fast runtimes in an open-source framework.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Predicting Cell Populations in Single Cell Mass Cytometry Data [J].
Abdelaal, Tamim ;
van Unen, Vincent ;
Hollt, Thomas ;
Koning, Frits ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
CYTOMETRY PART A, 2019, 95A (07) :769-781
[2]   GateFinder: projection-based gating strategy optimization for flow and mass cytometry [J].
Aghaeepour, Nima ;
Simonds, Erin F. ;
Knapp, David J. H. F. ;
Bruggner, Robert, V ;
Sachs, Karen ;
Culos, Anthony ;
Gherardini, Pier Federico ;
Samusik, Nikolay ;
Fragiadakis, Gabriela K. ;
Bendall, Sean C. ;
Gaudilliere, Brice ;
Angst, Martin S. ;
Eaves, Connie J. ;
Weiss, William A. ;
Fantl, Wendy J. ;
Nolan, Garry P. .
BIOINFORMATICS, 2018, 34 (23) :4131-4133
[3]   A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes [J].
Aghaeepour, Nima ;
Chattopadhyay, Pratip ;
Chikina, Maria ;
Dhaene, Tom ;
Van Gassen, Sofie ;
Kursa, Miron ;
Lambrecht, Bart N. ;
Malek, Mehrnoush ;
McLachlan, G. J. ;
Qian, Yu ;
Qiu, Peng ;
Saeys, Yvan ;
Stanton, Rick ;
Tong, Dong ;
Vens, Celine ;
Walkowiak, Slawomir ;
Wang, Kui ;
Finak, Greg ;
Gottardo, Raphael ;
Mosmann, Tim ;
Nolan, Garry P. ;
Scheuermann, Richard H. ;
Brinkman, Ryan R. .
CYTOMETRY PART A, 2016, 89A (01) :16-21
[4]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[5]   Sensitive detection of rare disease-associated cell subsets via representation learning [J].
Arvaniti, Eirini ;
Claassen, Manfred .
NATURE COMMUNICATIONS, 2017, 8
[6]   Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting [J].
Becht, Etienne ;
Simoni, Yannick ;
Coustan-Smith, Elaine ;
Evrard, Maximilien ;
Cheng, Yang ;
Ng, Lai Guan ;
Campana, Dario ;
Newell, Evan W. .
BIOINFORMATICS, 2019, 35 (02) :301-308
[7]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[8]   Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators [J].
Bodenmiller, Bernd ;
Zunder, Eli R. ;
Finck, Rachel ;
Chen, Tiffany J. ;
Savig, Erica S. ;
Bruggner, Robert V. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Sachs, Karen ;
Krutzik, Peter O. ;
Nolan, Garry P. .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :858-U89
[9]   Automated identification of stratifying signatures in cellular subpopulations [J].
Bruggner, Robert V. ;
Bodenmiller, Bernd ;
Dill, David L. ;
Tibshirani, Robert J. ;
Nolan, Garry P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :E2770-E2777
[10]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+