Influence of the capillary on the ignition of the transient spark discharge

被引:23
作者
Gerling, T. [1 ]
Hoder, T. [1 ]
Brandenburg, R. [1 ]
Bussiahn, R. [1 ]
Weltmann, K-D [1 ]
机构
[1] Leibniz Inst Plasma Sci & Technol INP Greifswald, D-17489 Greifswald, Germany
关键词
JET;
D O I
10.1088/0022-3727/46/14/145205
中图分类号
O59 [应用物理学];
学科分类号
摘要
A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
Becker W, 2012, BH TCSPC HDB, P106
[2]   Development of Barrier Discharges: Operation Modes and Structure Formation [J].
Bogaczyk, M. ;
Nemschokmichal, S. ;
Wild, R. ;
Stollenwerk, L. ;
Brandenburg, R. ;
Meichsner, J. ;
Wagner, H. -E. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (10) :847-855
[3]   The transition between different modes of barrier discharges at atmospheric pressure [J].
Brandenburg, R. ;
Navratil, Z. ;
Jansky, J. ;
St'ahel, P. ;
Trunec, D. ;
Wagner, H-E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (08)
[4]   The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications [J].
Bussiahn, R. ;
Brandenburg, R. ;
Gerling, T. ;
Kindel, E. ;
Lange, H. ;
Lembke, N. ;
Weltmann, K-D ;
von Woedtke, Th ;
Kocher, T. .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[5]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[6]   RF capillary jet - a tool for localized surface treatment [J].
Foest, R. ;
Kindel, E. ;
Lange, H. ;
Ohl, A. ;
Stieber, M. ;
Weltmann, K. -D. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (1-2) :119-128
[7]   Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures [J].
Gerling, T. ;
Nastuta, A. V. ;
Bussiahn, R. ;
Kindel, E. ;
Weltmann, K-D .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (03)
[8]  
Gerling T, 2011, P 30 ICPIG C BELF UK
[9]   A comparative study of three different types of barrier discharges in air at atmospheric pressure by cross-correlation spectroscopy [J].
Hoder, T. ;
Brandenburg, R. ;
Basner, R. ;
Weltmann, K-D ;
Kozlov, K. V. ;
Wagner, H-E .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (12)
[10]   Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters [J].
Janda, Mario ;
Martisovits, Viktor ;
Machala, Zdenko .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (03)