Connections between p = x2+3y2 and Franel numbers

被引:19
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Primes of the form x(2)+3y(2); Franel numbers; Congruences; CONGRUENCES; PRODUCTS;
D O I
10.1016/j.jnt.2013.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Franel numbers are given by f(n) = Sigma(n)(k=0) ((n)(k))(3) (n = 0, 1, 2, ... ). Let p > 3 be a prime. When p equivalent to 1 (mod 3) and p = x(2) + 3y(2) with x, y is an element of Z and x equivalent to 1 (mod 3), we show that Sigma(p-1)(k=0) f(k)/2(k) equivalent to Sigma(p-1)(k=0) f(k)/(-4)(k) equivalent to 2x - p/2x (mod p(2)). We also prove that if p equivalent to 2 (mod 3) then Sigma(p-1)(k=0) f(k)/2(k) equivalent to -2 Sigma(p-1)(k=0) f(k)/(-4)(k) equivalent to 3p/((p+1)/2(p+1)/6) (mod p(2)). In addition, we propose several related conjectures for further research. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2914 / 2928
页数:15
相关论文
共 20 条
  • [1] [Anonymous], 1998, Gauss and Jacobi Sums
  • [2] [Anonymous], NUMBER THEORY RELATE
  • [3] [Anonymous], 1972, COMBINATORIAL IDENTI
  • [4] [Anonymous], SEQUENCE A000172 OEI
  • [5] [Anonymous], 1989, A Wiley-Interscience Publication
  • [6] [Anonymous], 1979, Combinatorial Identities
  • [7] Callan David, 2008, JOURNAL OF INTEGER SEQUENCES, V11
  • [8] ON THE MOD P2 DETERMINATION OF ((P-1)/2(P-1)/4)
    CHOWLA, S
    DWORK, B
    EVANS, R
    [J]. JOURNAL OF NUMBER THEORY, 1986, 24 (02) : 188 - 196
  • [9] Mod p3 analogues of theorems of Gauss and Jacobi on binomial coefficients
    Cosgrave, John B.
    Dilcher, Karl
    [J]. ACTA ARITHMETICA, 2010, 142 (02) : 103 - 118
  • [10] MacMahon P.A., 1915, Combinatorial Analysis, V1