A Complexity Dichotomy for the Coloring of Sparse Graphs

被引:20
作者
Esperet, Louis [1 ]
Montassier, Mickael [2 ]
Ochem, Pascal [3 ]
Pinlou, Alexandre [3 ]
机构
[1] CNRS, Grenoble INP, Lab G SCOP, Grenoble, France
[2] Univ Bordeaux, CNRS, LaBRI, Talence, France
[3] Univ Montpellier 2, CNRS, LIRMM, Montpellier, France
关键词
homomorphism; complexity; sparse graphs; 4-CRITICAL PLANAR GRAPHS; VERTEX DECOMPOSITIONS; ACYCLIC COLORINGS; 3-COLOR PROBLEM; MAXIMUM DEGREE; LARGE GIRTH; INVARIANT; SUBGRAPH;
D O I
10.1002/jgt.21659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Galluccio, Goddyn, and Hell proved in 2001 that in any minor-closed class of graphs, graphs with large enough girth have a homomorphism to any given odd cycle. In this paper, we study the computational aspects of this problem. Let F be a monotone class of graphs containing all planar graphs, and closed under clique-sum of order at most two. Examples of such class include minor-closed classes containing all planar graphs, and such that all minimal obstructions are 3-connected. We prove that for any k and g, either every graph of girth at least g in F has a homomorphism to C2k+1, or deciding whether a graph of girth g in F has a homomorphism to C2k+1 is NP-complete. We also show that the same dichotomy occurs when considering 3-Colorability or acyclic 3-Colorability of graphs under various notions of density that are related to a question of Havel (On a conjecture of Grunbaum, J Combin Theory Ser B 7 (1969), 184186) and a conjecture of Steinberg (The state of the three color problem, Quo Vadis, Graph theory?, Ann Discrete Math 55 (1993), 211248) about the 3-Colorability of sparse planar graphs.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 41 条
  • [1] ABBOTT HL, 1991, ARS COMBINATORIA, V32, P203
  • [2] SOME COUNTEREXAMPLES ASSOCIATED WITH THE 3-COLOR PROBLEM
    AKSIONOV, VA
    MELNIKOV, LS
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) : 1 - 9
  • [3] Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
  • [4] Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Ochem, P.
    Raspaud, A.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 83 - 93
  • [5] Borodin O. V., 2010, SIB ELEKT MAT IZV, V7, P16
  • [6] [Бородин Олег Вениаминович Borodin Oleg Veniaminovich], 2009, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V16, P16
  • [7] Acyclic colourings of planar graphs with large girth
    Borodin, OV
    Kostochka, AV
    Woodall, DR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 344 - 352
  • [8] Borodin OV, 1996, ARS COMBINATORIA, V43, P191
  • [9] Homomorphisms from sparse graphs with large girth
    Borodin, OV
    Kim, SJ
    Kostochka, AV
    West, DB
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (01) : 147 - 159
  • [10] Borodin OV, 1996, J GRAPH THEOR, V21, P183