A Complexity Dichotomy for the Coloring of Sparse Graphs

被引:20
作者
Esperet, Louis [1 ]
Montassier, Mickael [2 ]
Ochem, Pascal [3 ]
Pinlou, Alexandre [3 ]
机构
[1] CNRS, Grenoble INP, Lab G SCOP, Grenoble, France
[2] Univ Bordeaux, CNRS, LaBRI, Talence, France
[3] Univ Montpellier 2, CNRS, LIRMM, Montpellier, France
关键词
homomorphism; complexity; sparse graphs; 4-CRITICAL PLANAR GRAPHS; VERTEX DECOMPOSITIONS; ACYCLIC COLORINGS; 3-COLOR PROBLEM; MAXIMUM DEGREE; LARGE GIRTH; INVARIANT; SUBGRAPH;
D O I
10.1002/jgt.21659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Galluccio, Goddyn, and Hell proved in 2001 that in any minor-closed class of graphs, graphs with large enough girth have a homomorphism to any given odd cycle. In this paper, we study the computational aspects of this problem. Let F be a monotone class of graphs containing all planar graphs, and closed under clique-sum of order at most two. Examples of such class include minor-closed classes containing all planar graphs, and such that all minimal obstructions are 3-connected. We prove that for any k and g, either every graph of girth at least g in F has a homomorphism to C2k+1, or deciding whether a graph of girth g in F has a homomorphism to C2k+1 is NP-complete. We also show that the same dichotomy occurs when considering 3-Colorability or acyclic 3-Colorability of graphs under various notions of density that are related to a question of Havel (On a conjecture of Grunbaum, J Combin Theory Ser B 7 (1969), 184186) and a conjecture of Steinberg (The state of the three color problem, Quo Vadis, Graph theory?, Ann Discrete Math 55 (1993), 211248) about the 3-Colorability of sparse planar graphs.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 41 条
[1]  
ABBOTT HL, 1991, ARS COMBINATORIA, V32, P203
[2]   SOME COUNTEREXAMPLES ASSOCIATED WITH THE 3-COLOR PROBLEM [J].
AKSIONOV, VA ;
MELNIKOV, LS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) :1-9
[3]  
Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
[4]   Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Ochem, P. ;
Raspaud, A. .
JOURNAL OF GRAPH THEORY, 2010, 65 (02) :83-93
[5]  
Borodin O. V., 2010, SIB ELEKT MAT IZV, V7, P16
[6]  
[Бородин Олег Вениаминович Borodin Oleg Veniaminovich], 2009, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V16, P16
[7]   Acyclic colourings of planar graphs with large girth [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :344-352
[8]  
Borodin OV, 1996, ARS COMBINATORIA, V43, P191
[9]   Homomorphisms from sparse graphs with large girth [J].
Borodin, OV ;
Kim, SJ ;
Kostochka, AV ;
West, DB .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (01) :147-159
[10]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183