The existence of a fixed point for the sum of two monotone operators

被引:5
作者
Chen, Yong-Zhuo [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Bradford, PA 16701 USA
关键词
Cone; convex metric space; fixed point; monotone operator; ordered Banach space; Thompson's metric;
D O I
10.1007/s11117-008-2154-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and H be two operators defined in an ordered Banach space such that H(tx) > tHx for all t is an element of (0, 1), and A(tx) >= t(alpha) Ax for all t is an element of (0, 1), where alpha is an element of (0, 1). This paper discusses the conditions which will guarantee the existence of an asymptotically attractive fixed point for T = A + H.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 14 条
[1]  
BLUMENTHAL L., 1953, THEORY APPL DISTANCE
[2]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[3]   Omega limit sets in positive cones [J].
Chen, YZ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :72-80
[4]   THOMPSON METRIC AND MIXED MONOTONE-OPERATORS [J].
CHEN, YZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 177 (01) :31-37
[5]  
Elaydi S., 1996, An Introduction to Difference Equations
[6]  
Guo D., 1988, NONLINEAR PROBLEMS A
[7]   ON GENERALIZED COMPLETE METRIC SPACES [J].
JUNG, CFK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (01) :113-&
[8]   Positive nonlinear difference equations [J].
Krause, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :301-308
[10]   On concave operators [J].
Liang, ZD ;
Wang, WX ;
Li, SJ .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (02) :577-582