Mixture of Gaussians in the open quantum random walks

被引:2
作者
Ko, Chul Ki [1 ]
Yoo, Hyun Jae [2 ,3 ]
机构
[1] Yonsei Univ, Univ Coll, 85 Songdogwahak Ro, Incheon 21983, South Korea
[2] Hankyong Natl Univ, Sch Comp Engn & Appl Math, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
[3] Hankyong Natl Univ, Inst Integrated Math Sci, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Open quantum random walks; Quantum dynamical semigroup; Invariant states; Crystal lattices; Central limit theorem; Mixture of Gaussians; CENTRAL LIMIT-THEOREMS;
D O I
10.1007/s11128-020-02751-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the Gaussian and the mixture of Gaussians in the limit of open quantum random walks. The central limit theorems for the open quantum random walks under certain conditions were proven by Attal et al (Ann Henri Poincare 16(1):15-43, 2015) on the integer lattices and by Ko et al (Quantum Inf Process 17(7):167, 2018) on the crystal lattices. The purpose of this paper is to investigate the general situation. We see that the Gaussian and the mixture of Gaussians in the limit depend on the structure of the invariant states of the intrinsic quantum Markov semigroup whose generator is given by the Kraus operators which generate the open quantum random walks. Some concrete models are considered for the open quantum random walks on the crystal lattices. Due to the intrinsic structure of the crystal lattices, we can conveniently construct the dynamics as we like. Here, we consider the crystal lattices of Z(2) with intrinsic two points, hexagonal, triangular, and Kagome lattices. We also discuss Fourier analysis on the crystal lattices which gives another method to get the limit theorems.
引用
收藏
页数:31
相关论文
共 12 条
[1]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852
[2]   Open quantum walks on graphs [J].
Attal, S. ;
Petruccione, F. ;
Sinayskiy, I. .
PHYSICS LETTERS A, 2012, 376 (18) :1545-1548
[3]   Central Limit Theorems for Open Quantum Random Walks and Quantum Measurement Records [J].
Attal, Stephane ;
Guillotin-Plantard, Nadine ;
Sabot, Christophe .
ANNALES HENRI POINCARE, 2015, 16 (01) :15-43
[4]  
Fagnola F, 2003, TRENDS MATH, P77
[5]   Transience and recurrence of quantum Markov semigroups [J].
Fagnola, F ;
Rebolledo, R .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :289-306
[6]   Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices [J].
Ko, Chul Ki ;
Konno, Norio ;
Segawa, Etsuo ;
Yoo, Hyun Jae .
JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (03) :710-735
[7]   How does Grover walk recognize the shape of crystal lattice? [J].
Ko, Chul Ki ;
Konno, Norio ;
Segawa, Etsuo ;
Yoo, Hyun Jae .
QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
[8]   Limit Theorems for Open Quantum Random Walks [J].
Konno, Norio ;
Yoo, Hyun Jae .
JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (02) :299-319
[9]  
Pellicer R., 2009, COMMUN STOCH ANAL, V3, P407
[10]  
Sunada T., 2013, Surveys and Tutorials in the Applied Mathematical Sciences, V6