A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation

被引:0
作者
Yan, Ningning [1 ]
Zhou, Zhaojie [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Constrained optimal control problem; convection dominated diffusion equation; streamline diffusion finite element method; a priori error estimate; a posteriori error estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a streamline diffusion finite element approximation scheme for the constrained optimal control problem governed by linear convection dominated diffusion equations. We prove the existence and uniqueness of the discretized scheme. Then a priori and a posteriori error estimates are derived for the state, the co-state and the control. Three numerical examples are presented to illustrate our theoretical results.
引用
收藏
页码:297 / 320
页数:24
相关论文
共 50 条
[21]   EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY PARABOLIC EQUATIONS [J].
Sun, Tongjun ;
Ge, Liang ;
Liu, Wenbin .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) :1-23
[22]   A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BENARD PROBLEM [J].
Chang, Yanzhen ;
Yang, Danping .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (01) :68-87
[23]   Finite element method for an optimal control problem governed by a time fractional wave equation [J].
Wang, Shuo ;
Zheng, Xiangcheng ;
Du, Ning .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 164 :45-66
[24]   A posteriori error estimates for continuous interior penalty Galerkin approximation of transient convection diffusion optimal control problems [J].
Zhou, Zhaojie ;
Fu, Hongfei .
BOUNDARY VALUE PROBLEMS, 2014, :1-19
[25]   A posteriori error estimates for continuous interior penalty Galerkin approximation of transient convection diffusion optimal control problems [J].
Zhaojie Zhou ;
Hongfei Fu .
Boundary Value Problems, 2014
[26]   Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem [J].
Bochra Djeridi ;
Radouen Ghanem ;
Hocine Sissaoui .
Journal of Scientific Computing, 2020, 85
[27]   Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem [J].
Djeridi, Bochra ;
Ghanem, Radouen ;
Sissaoui, Hocine .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (03)
[28]   A posteriori error estimates for optimal distributed control governed by the evolution equations [J].
Xiong, Chunguang ;
Li, Yuan .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) :181-200
[29]   Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem [J].
Kopteva, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) :423-441
[30]   Maximum norm a posteriori error estimates for convection-diffusion problems [J].
Demlow, Alan ;
Franz, Sebastian ;
Kopteva, Natalia .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) :2562-2584