A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation

被引:0
作者
Yan, Ningning [1 ]
Zhou, Zhaojie [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Constrained optimal control problem; convection dominated diffusion equation; streamline diffusion finite element method; a priori error estimate; a posteriori error estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a streamline diffusion finite element approximation scheme for the constrained optimal control problem governed by linear convection dominated diffusion equations. We prove the existence and uniqueness of the discretized scheme. Then a priori and a posteriori error estimates are derived for the state, the co-state and the control. Three numerical examples are presented to illustrate our theoretical results.
引用
收藏
页码:297 / 320
页数:24
相关论文
共 50 条
[11]   The streamline-diffusion finite element method on graded meshes for a convection-diffusion problem [J].
Yin, Yunhui ;
Zhu, Peng .
APPLIED NUMERICAL MATHEMATICS, 2019, 138 :19-29
[12]   Error analysis of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation [J].
Liu, Huipo ;
Wang, Shuanghu ;
Han, Hongbin ;
Yuan, Lan .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) :1493-1512
[13]   The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems [J].
Qian, Lingzhi ;
Feng, Xinlong ;
He, Yinnian .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (02) :561-572
[14]   THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY CONVECTION DIFFUSION EQUATIONS [J].
Zhou, Zhaojie ;
Yan, Ningning .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (04) :681-699
[15]   A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem [J].
Qiming Wang ;
Zhaojie Zhou .
Numerical Algorithms, 2022, 90 :989-1015
[16]   A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem [J].
Wang, Qiming ;
Zhou, Zhaojie .
NUMERICAL ALGORITHMS, 2022, 90 (03) :989-1015
[17]   Finite element approximation of optimal control problems governed by time fractional diffusion equation [J].
Zhou, Zhaojie ;
Gong, Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (01) :301-318
[18]   Finite Element Method and A Priori Error Estimates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs [J].
Wei Gong ;
Michael Hinze ;
Zhaojie Zhou .
Journal of Scientific Computing, 2016, 66 :941-967
[19]   Finite Element Method and A Priori Error Estimates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs [J].
Gong, Wei ;
Hinze, Michael ;
Zhou, Zhaojie .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) :941-967
[20]   A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems [J].
Liu, Ying ;
Nie, Yufeng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 :73-83