Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn-Hilliard Model of Two-Phase Incompressible Flows

被引:10
作者
Xu, Zhen [1 ]
Yang, Xiaofeng [2 ]
Zhang, Hui [3 ,4 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
关键词
Cahn-Hilliard; Two-phase flow; Navier-Stokes; Error estimates; Decoupled; Unconditional energy stability; Linear stabilization; 65M12; 65M15; 35Q30; 65Z05; PHASE-FIELD MODEL; ENERGY STABLE SCHEMES; FINITE-ELEMENT APPROXIMATIONS; DIFFUSE INTERFACE MODEL; NUMERICAL APPROXIMATIONS; ALLEN-CAHN; GRADIENT FLOWS; 2ND-ORDER; FLUIDS; EFFICIENT;
D O I
10.1007/s10915-020-01241-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we carry out rigorous error analysis for a first-order in time, linear, fully decoupled and energy stable scheme for solving the Cahn-Hilliard phase-field model of two-phase incompressible flows, namely Cahn-Hilliard-Navier-Stokes problem (Shen and Yang, SIAM J Numer Anal, 2015). The error estimates are for phase field variable, chemical potential, velocity and further the pressure in L2 norm and L infinity norm. The scheme combines the projection method, the explicit stabilizing decoupling technique, and the linear stabilization approach together. We further derive the boundness of numerical solution in L infinity norm with the mathematical deduction, and deal with the complex splitting error arising from the decoupling technique. Optimal error estimates are derived for the semi-discrete-in-time scheme.
引用
收藏
页数:27
相关论文
共 73 条
  • [1] Diffuse-interface methods in fluid mechanics
    Anderson, DM
    McFadden, GB
    Wheeler, AA
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 : 139 - 165
  • [2] NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL
    Boyer, Franck
    Minjeaud, Sebastian
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04): : 697 - 738
  • [3] ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME TO A CAHN-HILLIARD PHASE-FIELD MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOWS
    Cai, Yongyong
    Shen, Jie
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (313) : 2057 - 2090
  • [4] Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows
    Cai, Yongyong
    Choi, Heejun
    Shen, Jie
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (02) : 417 - 449
  • [5] Efficient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn-Hilliard Systems
    Chen, Feng
    Shen, Jie
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) : 1189 - 1208
  • [6] Decoupled energy stable schemes for phase-field vesicle membrane model
    Chen, Rui
    Ji, Guanghua
    Yang, Xiaofeng
    Zhang, Hui
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 509 - 523
  • [7] Christlieb A., 2014, J CHEM PHYS, V257, P192
  • [8] Unconditionally gradient stable time marching the Cahn-Hilliard equation
    Eyre, DJ
    [J]. COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 : 39 - 46
  • [9] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (01) : 47 - 84
  • [10] Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2003, 94 (01) : 33 - 65