Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn-Hilliard Model of Two-Phase Incompressible Flows

被引:12
作者
Xu, Zhen [1 ]
Yang, Xiaofeng [2 ]
Zhang, Hui [3 ,4 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Minist Educ, Lab Math & Complex Syst, Beijing, Peoples R China
关键词
Cahn-Hilliard; Two-phase flow; Navier-Stokes; Error estimates; Decoupled; Unconditional energy stability; Linear stabilization; 65M12; 65M15; 35Q30; 65Z05; PHASE-FIELD MODEL; ENERGY STABLE SCHEMES; FINITE-ELEMENT APPROXIMATIONS; DIFFUSE INTERFACE MODEL; NUMERICAL APPROXIMATIONS; ALLEN-CAHN; GRADIENT FLOWS; 2ND-ORDER; FLUIDS; EFFICIENT;
D O I
10.1007/s10915-020-01241-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we carry out rigorous error analysis for a first-order in time, linear, fully decoupled and energy stable scheme for solving the Cahn-Hilliard phase-field model of two-phase incompressible flows, namely Cahn-Hilliard-Navier-Stokes problem (Shen and Yang, SIAM J Numer Anal, 2015). The error estimates are for phase field variable, chemical potential, velocity and further the pressure in L2 norm and L infinity norm. The scheme combines the projection method, the explicit stabilizing decoupling technique, and the linear stabilization approach together. We further derive the boundness of numerical solution in L infinity norm with the mathematical deduction, and deal with the complex splitting error arising from the decoupling technique. Optimal error estimates are derived for the semi-discrete-in-time scheme.
引用
收藏
页数:27
相关论文
共 73 条
[1]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[2]   NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL [J].
Boyer, Franck ;
Minjeaud, Sebastian .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04) :697-738
[3]   ERROR ESTIMATES FOR A FULLY DISCRETIZED SCHEME TO A CAHN-HILLIARD PHASE-FIELD MODEL FOR TWO-PHASE INCOMPRESSIBLE FLOWS [J].
Cai, Yongyong ;
Shen, Jie .
MATHEMATICS OF COMPUTATION, 2018, 87 (313) :2057-2090
[4]   Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows [J].
Cai, Yongyong ;
Choi, Heejun ;
Shen, Jie .
NUMERISCHE MATHEMATIK, 2017, 137 (02) :417-449
[5]   Efficient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn-Hilliard Systems [J].
Chen, Feng ;
Shen, Jie .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (05) :1189-1208
[6]   Decoupled energy stable schemes for phase-field vesicle membrane model [J].
Chen, Rui ;
Ji, Guanghua ;
Yang, Xiaofeng ;
Zhang, Hui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 :509-523
[7]  
Christlieb A., 2014, J CHEM PHYS, V257, P192
[8]   Unconditionally gradient stable time marching the Cahn-Hilliard equation [J].
Eyre, DJ .
COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 :39-46
[9]   Error analysis of a mixed finite element method for the Cahn-Hilliard equation [J].
Feng, XB ;
Prohl, A .
NUMERISCHE MATHEMATIK, 2004, 99 (01) :47-84
[10]   Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows [J].
Feng, XB ;
Prohl, A .
NUMERISCHE MATHEMATIK, 2003, 94 (01) :33-65