Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect

被引:154
作者
Liu, W. C. [1 ,2 ]
Guo, B. L. [1 ,2 ]
Wu, X. S. [3 ]
Zhang, F. M. [1 ,2 ,3 ]
Mak, C. L. [4 ,5 ]
Wong, K. H. [4 ,5 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Modern Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Photovolta Engn Ctr, Sch Modern Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Photovolta Engn Ctr, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Mat Res Ctr, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-COST; PEAK;
D O I
10.1039/c3ta00357d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed a facile hydrothermal method for synthesizing ultrafine size-controllable earth-abundant Cu2ZnSnS4 (CZTS) nanocrystals using simple Cu(II), Zn(II) and Sn(II) inorganic salts and thiourea in a mixed ethylenediamine and di-water solution as precursors. X-ray diffraction, Raman scattering and transmission electron microscopy confirm that pure kesterite structure CZTS nanocrystals have been synthesized at temperatures as low as 180 degrees C. Broadening of Raman peaks and blue-shift of the absorption edge is attributed to quantum confinement within the nanocrystals. The hydrophilism and tunable band-gap of the CZTS nanocrystals show the potential applications of the nanocrystals for biological labelling and quantum dot based solar cells.
引用
收藏
页码:3182 / 3186
页数:5
相关论文
共 22 条
[1]   A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles [J].
Cao, M. ;
Shen, Y. .
JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) :1117-1120
[2]   Quaternary Cu2CdSnS4 nanoparticles synthesized by a simple solvothermal method [J].
Cao, Meng ;
Li, Liang ;
Fan, Wen Zhe ;
Liu, Xiu Yong ;
Sun, Yan ;
Shen, Yue .
CHEMICAL PHYSICS LETTERS, 2012, 534 :34-37
[3]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[4]   Synthesis and photoresponse of novel Cu2CdSnS4 semiconductor nanorods [J].
Cui, Yong ;
Wang, Gang ;
Pan, Daocheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) :12471-12473
[5]  
EMSLEY J, 1998, ELEMENTS, P289
[6]   Growth and Raman scattering characterization of Cu2ZnSnS4 thin films [J].
Fernandes, P. A. ;
Salome, P. M. P. ;
da Cunha, A. F. .
THIN SOLID FILMS, 2009, 517 (07) :2519-2523
[7]   Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells [J].
Guo, Qijie ;
Hillhouse, Hugh W. ;
Agrawal, Rakesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11672-+
[8]   (Mn, Zn) Co-doped CdS nanowires [J].
Kim, Dae Sung ;
Cho, Yong Jae ;
Park, Jeunghee ;
Yoon, Jungbum ;
Jo, Younghun ;
Jung, Myung-Hwa .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (29) :10861-10868
[9]   Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor [J].
Lu, Xiaotang ;
Zhuang, Zhongbin ;
Peng, Qing ;
Li, Yadong .
CHEMICAL COMMUNICATIONS, 2011, 47 (11) :3141-3143
[10]  
Mitzi D. B., 2012, 38 IEEE PVSC C