Singular solutions of a nonlinear elliptic equation in a punctured domain

被引:14
作者
Bachar, Imed [1 ]
Maagli, Habib [2 ,3 ]
Radulescu, Vicentiu D. [4 ,5 ]
机构
[1] King Saud Univ, Coll Sci, Math Dept, POB 2455, Riyadh 11451, Saudi Arabia
[2] King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh Campus,POB 344, Rabigh 21911, Saudi Arabia
[3] Fac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia
[4] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[5] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
关键词
singular positive solution; Green's function; Karamata class; Kato class; blow-up; BOUNDARY BLOW-UP; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; BEHAVIOR; EXISTENCE;
D O I
10.14232/ejqtde.2017.1.94
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following semilinear problem {-Delta u (x) = a (x) u(sigma) (x), x is an element of Omega\{0} (in the distributional sense), u > 0, in Omega\{0}, lim(vertical bar x vertical bar -> 0) vertical bar x vertical bar(n-2) u (x) = 0, u (x) - 0, x is an element of partial derivative Omega, where sigma < 1, Omega is a bounded regular domain in R-n (n >= 3) containing 0 and a is a positive continuous function in Omega\{0}, which may be singular at x = 0 and/or at the boundary partial derivative Omega. When the weight function a ( x) satisfies suitable assumption related to Karamata class, we prove the existence of a positive continuous solution on <(Omega)over bar>\{0}, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 33 条
[1]  
[Anonymous], 1983, Grundlehren der Mathematischen Wissenschaften
[2]  
[Anonymous], 2000, Lecture Notes Mathematics, DOI DOI 10.1007/BFB0103952
[3]  
[Anonymous], TOPOLOGICAL INTRO NO
[4]  
[Anonymous], COLLECTION COMMISS S
[5]  
[Anonymous], CONT MATH ITS APPL
[6]  
[Anonymous], OXFORD LECT SERIES M
[7]  
[Anonymous], 1976, LECT NOTES MATH
[8]  
[Anonymous], 1995, GRUNDLEHREN MATH WIS, DOI [DOI 10.1007/978-3-642-57856-4, 10.1007/978-3-642-57856-4]
[9]  
[Anonymous], 1989, ENCY MATH ITS APPL
[10]   Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems [J].
Ben Othman, Sonia ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4137-4150