Using multiple genetic variants as instrumental variables for modifiable risk factors

被引:830
作者
Palmer, Tom M. [1 ]
Lawlor, Debbie A. [1 ]
Harbord, Roger M.
Sheehan, Nuala A. [2 ,3 ]
Tobias, Jon H. [4 ]
Timpson, Nicholas J. [1 ]
Smith, George Davey [1 ]
Sterne, Jonathan A. C.
机构
[1] Univ Bristol, Sch Social & Community Med, MRC Ctr Causal Anal Translat Epidemiol, Bristol BS8 2BN, Avon, England
[2] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
[3] Univ Leicester, Dept Genet, Leicester LE1 7RH, Leics, England
[4] Univ Bristol, Sch Clin Sci, Bristol BS8 2BN, Avon, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
causal inference; econometrics; epidemiology; genetics; instrumental variables; Mendelian randomisation; GENOME-WIDE ASSOCIATION; MENDELIAN RANDOMIZATION; TCF7L2; GENE; CAUSAL INFERENCE; GENERALIZED-METHOD; SAMPLE PROPERTIES; WEAK INSTRUMENTS; COMMON VARIANTS; FTO GENE; FAT MASS;
D O I
10.1177/0962280210394459
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Mendelian randomisation analyses use genetic variants as instrumental variables (IVs) to estimate causal effects of modifiable risk factors on disease outcomes. Genetic variants typically explain a small proportion of the variability in risk factors; hence Mendelian randomisation analyses can require large sample sizes. However, an increasing number of genetic variants have been found to be robustly associated with disease-related outcomes in genome-wide association studies. Use of multiple instruments can improve the precision of IV estimates, and also permit examination of underlying IV assumptions. We discuss the use of multiple genetic variants in Mendelian randomisation analyses with continuous outcome variables where all relationships are assumed to be linear. We describe possible violations of IV assumptions, and how multiple instrument analyses can be used to identify them. We present an example using four adiposity-associated genetic variants as IVs for the causal effect of fat mass on bone density, using data on 5509 children enrolled in the ALSPAC birth cohort study. We also use simulation studies to examine the effect of different sets of IVs on precision and bias. When each instrument independently explains variability in the risk factor, use of multiple instruments increases the precision of IV estimates. However, inclusion of weak instruments could increase finite sample bias. Missing data on multiple genetic variants can diminish the available sample size, compared with single instrument analyses. In simulations with additive genotype-risk factor effects, IV estimates using a weighted allele score had similar properties to estimates using multiple instruments. Under the correct conditions, multiple instrument analyses are a promising approach for Mendelian randomisation studies. Further research is required into multiple imputation methods to address missing data issues in IV estimation.
引用
收藏
页码:223 / 242
页数:20
相关论文
共 69 条
  • [1] Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
  • [2] [Anonymous], 2001, Econometric Analysis of Cross Section and Panel Data
  • [3] Evaluating coverage of genome-wide association studies
    Barrett, Jeffrey C.
    Cardon, Lon R.
    [J]. NATURE GENETICS, 2006, 38 (06) : 659 - 662
  • [4] Enhanced routines for instrumental variables/generalized method of moments estimation and testing
    Baum, Christopher F.
    Schaffer, Mark E.
    Stillman, Steven
    [J]. STATA JOURNAL, 2007, 7 (04) : 465 - 506
  • [5] Instrumental variables and GMM: Estimation and testing
    Baum, Christopher F.
    Schaffer, Mark E.
    Stillman, Steven
    [J]. STATA JOURNAL, 2003, 3 (01) : 1 - 31
  • [6] Baum ChristopherF., 2002, IVREG2: Stata module for extended instrumental variables/2SLS and GMM estimation
  • [7] Estimation of bias in nongenetic observational studies using "Mendelian triangulation"
    Bautista, Leonelo E.
    Smeeth, Liam
    Hingorani, Aroon D.
    Casas, Juan P.
    [J]. ANNALS OF EPIDEMIOLOGY, 2006, 16 (09) : 675 - 680
  • [8] Genetic signatures of strong recent positive selection at the lactase gene
    Bersaglieri, T
    Sabeti, PC
    Patterson, N
    Vanderploeg, T
    Schaffner, SF
    Drake, JA
    Rhodes, M
    Reich, DE
    Hirschhorn, JN
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (06) : 1111 - 1120
  • [9] PROBLEMS WITH INSTRUMENTAL VARIABLES ESTIMATION WHEN THE CORRELATION BETWEEN THE INSTRUMENTS AND THE ENDOGENOUS EXPLANATORY VARIABLE IS WEAK
    BOUND, J
    JAEGER, DA
    BAKER, RM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 443 - 450
  • [10] Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    Burton, Paul R.
    Clayton, David G.
    Cardon, Lon R.
    Craddock, Nick
    Deloukas, Panos
    Duncanson, Audrey
    Kwiatkowski, Dominic P.
    McCarthy, Mark I.
    Ouwehand, Willem H.
    Samani, Nilesh J.
    Todd, John A.
    Donnelly, Peter
    Barrett, Jeffrey C.
    Davison, Dan
    Easton, Doug
    Evans, David
    Leung, Hin-Tak
    Marchini, Jonathan L.
    Morris, Andrew P.
    Spencer, Chris C. A.
    Tobin, Martin D.
    Attwood, Antony P.
    Boorman, James P.
    Cant, Barbara
    Everson, Ursula
    Hussey, Judith M.
    Jolley, Jennifer D.
    Knight, Alexandra S.
    Koch, Kerstin
    Meech, Elizabeth
    Nutland, Sarah
    Prowse, Christopher V.
    Stevens, Helen E.
    Taylor, Niall C.
    Walters, Graham R.
    Walker, Neil M.
    Watkins, Nicholas A.
    Winzer, Thilo
    Jones, Richard W.
    McArdle, Wendy L.
    Ring, Susan M.
    Strachan, David P.
    Pembrey, Marcus
    Breen, Gerome
    St Clair, David
    Caesar, Sian
    Gordon-Smith, Katherine
    Jones, Lisa
    Fraser, Christine
    Green, Elain K.
    [J]. NATURE, 2007, 447 (7145) : 661 - 678