Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries

被引:14
|
作者
Fu, Yuan-Xiang [1 ]
Pei, Xian-Yinan [2 ]
Mo, Dong-Chuan [1 ]
Lyu, Shu-Shen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem Engn & Technol, Guangzhou 510275, Guangdong, Peoples R China
关键词
HARD CARBON; MESOPOROUS CARBON; LARGE-SCALE; CONTROLLABLE SYNTHESIS; ELECTRODE MATERIALS; RECENT PROGRESS; GRAPHENE; CARBONIZATION; SUPERCAPACITORS; NANOPARTICLES;
D O I
10.1007/s10854-019-00807-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a type of macroporous carbon (MPC) material was produced using water-soluble sodium carbonate (Na2CO3) as the template and glucose as the carbon precursor. After annealing in an argon atmosphere (Ar) at 700 degrees C, the samples exhibited specific surface areas up to 600m(2)g(-1) with different proportions of sodium carbonate and glucose. When the samples were employed as anode materials in lithium-ion batteries, the electrodes delivered a stable reversible capacity at 200 mAg(-1) and favourable cycling stability at 500mAg(-1). Moreover, all MPC samples exhibited excellent rate performances at 5000mAg(-1).
引用
收藏
页码:5092 / 5097
页数:6
相关论文
共 50 条
  • [1] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Yuan-Xiang Fu
    Xian-Yinan Pei
    Dong-Chuan Mo
    Shu-Shen Lyu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5092 - 5097
  • [2] Synthesis, characterization and application of carbon nanocages as anode materials for high-performance lithium-ion batteries
    Li, Guangda
    Xu, Liqiang
    Hao, Qin
    Wang, Meng
    Qian, Yitai
    RSC ADVANCES, 2012, 2 (01): : 284 - 291
  • [3] Nanostructured anode materials for high-performance lithium-ion batteries
    Xie, Jingjie
    Yin, Jing
    Xu, Lan
    Ahmed, Adnan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [4] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53
  • [5] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Lu, Jun
    Chen, Zhongwei
    Pan, Feng
    Cui, Yi
    Amine, Khalil
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 35 - 53
  • [6] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205
  • [7] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [8] Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries
    Wang, Bao
    Wu, Xing-Long
    Shu, Chun-Ying
    Guo, Yu-Guo
    Wang, Chun-Ru
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (47) : 10661 - 10664
  • [9] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [10] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770