Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data

被引:16
作者
Link, Daphna [1 ,2 ]
Braginsky, Michael B. [3 ]
Joskowicz, Leo [3 ]
Ben Sira, Liat [4 ]
Harel, Shaul [2 ,5 ]
Many, Ariel [6 ]
Tarrasch, Ricardo [7 ,8 ]
Malinger, Gustavo [9 ]
Artzi, Moran [1 ,2 ]
Kapoor, Cassandra [10 ]
Miller, Elka [10 ]
Ben Bashat, Dafna [1 ,2 ,8 ]
机构
[1] Tel Aviv Sourasky Med Ctr, Wohl Inst Adv Imaging, Funct Brain Ctr, Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
[3] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, Jerusalem, Israel
[4] Tel Aviv Sourasky Med Ctr, Div Pediat Radiol, Tel Aviv, Israel
[5] Tel Aviv Sourasky Med Ctr, Pediat Neurol, Tel Aviv, Israel
[6] Tel Aviv Sourasky Med Ctr, Lis Matern Hosp, Dept Obstet & Gynecol, Tel Aviv, Israel
[7] Tel Aviv Univ, Jaime & Joan Constantiner Sch Educ, Tel Aviv, Israel
[8] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[9] Tel Aviv Sourasky Med Ctr, Obstet & Gynecol Ultrasound Unit, Tel Aviv, Israel
[10] Univ Ottawa, Childrens Hosp Eastern Ontario, Med Imaging Dept, Ottawa, ON, Canada
关键词
Fetal magnetic resonance imaging; Fetal growth; Brain; Intrauterine growth restriction; Brain segmentation; Fetal brain development; Normal growth charts; INTRAUTERINE GROWTH-RETARDATION; IN-UTERO; SEGMENTATION; MR; ULTRASOUND; PREGNANCY; FETUSES; CHARTS; ATLAS; SHAPE;
D O I
10.1159/000475548
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Background: Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. Subjects and Methods: A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). Results: The developed method showed high correlation with manual segmentation (r(2) = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. Discussion: The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. (C) 2017 S. Karger AG, Basel
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [31] Fetal brain morphometry on prenatal magnetic resonance imaging in congenital diaphragmatic hernia
    Radhakrishnan, Rupa
    Merhar, Stephanie L.
    Burns, Patricia
    Zhang, Bin
    Lim, Foong-Yen
    Kline-Fath, Beth M.
    PEDIATRIC RADIOLOGY, 2019, 49 (02) : 217 - 223
  • [32] Ex vivo Magnetic Resonance Imaging of the Human Fetal Brain
    Chen, Ruike
    Tian, Chen
    Zhu, Keqing
    Ren, Guoliang
    Bao, Aimin
    Shen, Yi
    Li, Xiao
    Zhang, Yaoyao
    Qiu, Wenying
    Ma, Chao
    Zhang, Jing
    Wu, Dan
    DEVELOPMENTAL NEUROSCIENCE, 2024,
  • [33] Volumetric Fetal Flow Imaging With Magnetic Resonance Imaging
    Goolaub, Datta Singh
    Xu, Jiawei
    Schrauben, Eric M.
    Marini, Davide
    Kingdom, John C.
    Sled, John G.
    Seed, Mike
    Macgowan, Christopher K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2941 - 2952
  • [34] Fetal Magnetic Resonance Imaging of Acquired and Developmental Brain Anomalies
    Girard, Nadine
    Chaumoitre, Kathia
    Chapon, Frederique
    Pineau, Sandrine
    Barberet, Marie
    Brunel, Herve
    SEMINARS IN PERINATOLOGY, 2009, 33 (04) : 234 - 250
  • [35] Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data
    Sobotka, Daniel
    Ebner, Michael
    Schwartz, Ernst
    Nenning, Karl-Heinz
    Taymourtash, Athena
    Vercauteren, Tom
    Ourselin, Sebastien
    Kasprian, Gregor
    Prayer, Daniela
    Langs, Georg
    Licandro, Roxane
    NEUROIMAGE, 2022, 255
  • [36] Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography
    Malinger, G
    Ben-Sira, L
    Lev, D
    Ben-Aroya, Z
    Kidron, D
    Lerman-Sagie, T
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2004, 23 (04) : 333 - 340
  • [37] Fetal Magnetic Resonance Imaging (MRI): A Tool for a Better Understanding of Normal and Abnormal Brain Development
    Saleem, Sahar N.
    JOURNAL OF CHILD NEUROLOGY, 2013, 28 (07) : 890 - 908
  • [38] Optimal Method for Fetal Brain Age Prediction Using Multiplanar Slices From Structural Magnetic Resonance Imaging
    Hong, Jinwoo
    Yun, Hyuk Jin
    Park, Gilsoon
    Kim, Seonggyu
    Ou, Yangming
    Vasung, Lana
    Rollins, Caitlin K.
    Ortinau, Cynthia M.
    Takeoka, Emiko
    Akiyama, Shizuko
    Tarui, Tomo
    Estroff, Judy A.
    Grant, Patricia Ellen
    Lee, Jong-Min
    Im, Kiho
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [39] Fetal magnetic resonance imaging
    Reith, W.
    Haussmann, A.
    Yilmaz, U.
    RADIOLOGE, 2018, 58 (07): : 668 - 672
  • [40] Use of Magnetic Resonance Imaging in Evaluating Fetal Brain and Abdomen Malformations during Pregnancy
    Valeviciene, Nomeda Rima
    Varyte, Guoda
    Zakareviciene, Jolita
    Kontrimaviciute, Egle
    Ramasauskaite, Diana
    Rutkauskaite-Valanciene, Dileta
    MEDICINA-LITHUANIA, 2019, 55 (02):